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The goal of this study is to assess conventional and low temperature dual fuel
combustion in light- and heavy-duty multi-cylinder compression ignition engines in terms
of combustion characterization, performance, and emissions. First, a light-duty
compression ignition engine is converted to a dual fuel engine and instrumented for in-
cylinder pressure measurements. The primary fuels, methane and propane, are each
mtroduced into the system by means of fumigation before the turbocharger, ensuring the
air-fuel composition is well-mixed. Experiments are performed at 2.5, 5, 7.5, and 10 bar
BMEP at an engne speed of 1800 RPM. Heat release analyses reveal that the ignition
delay and subsequent combustion processes are dependent on the primary fuel type and
concentration, pilot quantity, and loading condition. At low load, diesel-ignited propane
yields longer ignition delay periods than diesel-ignited methane, while at high load the
reactivity of propane is more pronounced, leading to shorter ignition delays. At high load
(BMEP = 10 bar), the rapid heat release associated with diesel-ignited propane appears to
occur even before pilot mjection, possibly indicating auto-ignition of the propane-air

mixture. Next, a modern, heavy-duty compression ignition engine is commissioned with
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an open architecture controller and instrumented for in-cylinder pressure measurements.
Initial diesel-ignited propane dual fuel experiments (fumigated before the turbocharger)
at 1500 RPM reveal that the maximum percent energy substitution (PES) of propane is
limited to 86, 60, 33, and 25 percent at 5, 10, 15, and 20 bar BMEP, respectively.
Fueling strategy, ijection strategy, exhaust gas recirculation (EGR) rate, and intake
boost pressure are varied in order to maximize the PES of propane at 10 bar BMEP,
which increases from 60 PES to 80 PES of propane. Fmally, diesel-ignited propane dual
fuel low temperature combustion (LTC) is implemented using early injection timings (50
DBTDC) at 5 bar BMEP. A sweep of mjection timings from 10 DBTDC to 50 DBTDC
reveals the ftransition from conventional to low temperature dual fuel combustion,
indicated by ultra-low NOx and smoke emissions. Optimization of the dual fuel LTC

concept yields less than 0.02 g/lkW-hr NOx and 0.06 FSN smoke at 93 PES of propane.
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CHAPTER

INTRODUCTION AND REVIEW OF PAST RESEARCH

The increasing need for improved fuel economy and reduced pollutant emissions
from ternal combustion engmnes has refocused attention on combustion strategies that
achieve highly efficient, clean combustion over a wide range of engne operating
conditions. As of 2010, the United States Environmental Protection Agency (EPA)
standards for heavy duty diesel engine exhaust emissions require less than 0.013 g/kW-hr
of particulate emissions (PM or soot) and 0.268 g/kW-hr of oxides of nitrogen (NOx). To
meet these standards, engines employing advanced combustion concepts coupled with
complex and expensive aftertreament systems have been developed.

Startmg i 2007, tightening EPA restrictions on PM emissions caused diesel
engine manufacturers to add diesel particulate filters (DPFs) to exhaust aftertreatment.
These systems trap solid particles as they pass through a fine mesh. Once a filter
becomes clogged it must be regenerated, whereby a fuel jet is ignited at the filter to
completely oxidize the trapped particles. These systems reduce overall system efficiency
in several ways. First, if the engne is in a vehicle, the additional weight of the system
will nhibit performance. Second, the restrictive nature of a filter in the exhaust increases
pumping losses and, if turbocharged, reduces the turbine’s ability to extract energy from

the exhaust, decreasing turbocharger efficiency. Last, the fuel required to ‘“regen” the
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filter does not contrbute to the engine’s power output, therefore is essentially wasted
energy.

In 2010, EPA restrictions on NOx emissions requred many diesel engne
manufacturers to employ selective catalytic reduction (SCR) systems in order to meet
acceptable levels of NOx. SCR systems inject an aqueous urea solution, or diesel exhaust
fluid (DEF), into the exhaust stream where it decomposes into ammonia and carbon
dioxide (CO2). With the catalyst, the ammonia reduces NOx i the exhaust into water
(H20) and nitrogen (N2). The DEF must be carefully injected so that ammonia does not
pass through the SCR unreacted, contributing to increased harmful emissions. Due to its
complexity, the SCR is typically a bulky system by itself, however, the required reservoir
of DEF adds additional weight to the system. The DEF requirement is particularly
significant in terms of maintenance cost, since the engine not only requires diesel fuel but
DEF as well.

In additon to emissions regulation, energy security and sustainability concerns
have driven the search for suitable alternatives (e.g., gaseous alternative fuels [Karim
2003] and biofuels [Sequera et al 2011]) to conventional fossil-derived fuels such as
gasoline and diesel As a result, dual fuel combustion has received renewed interest due
to its use of alternative fuels and well-known emissions benefits compared to

conventional diesel combustion.

1.1 Reviewon Some Important Topics
1.1.1  Dec’s Conceptual Model of Conventional Diesel Combustion

Before covering more advanced combustion modes, it is important that the

modern interpretation of conventional diesel combustion is understood. The most widely
2
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accepted interpretation of conventional diesel combustion is given in [Dec 1997]. In this
work, laser sheet imaging and other optical diagnostic techniques are used to summarize
and depict the combustion process in a modern diesel engine.

In the absence of wall interactions and swirl, Dec’s model first depicts jet
development. At the mjector, a small region forms contamning only liquid fuel while air
is entrained and the fuel vaporizes as it travels downstream. A fuel vapor region is
formed along the sides of the liquid jet. As the fuel reaches its maximum penetration
length, the entrainment of hot air is sufficient to vaporize all fuel The fuel vapor
continues to penetrate into the cylinder and the head vortex region develops, having a
relatively evenly distributed fuel and air mixture typically at equivalence ratios' ranging
from 2 to 4. Chemiluminescence of the head vortex region indicates autoignition,
whereupon the premixed burn phase begns, also referred to as the first stage of
conventional diesel combustion.

The first part of premixed burn is synonymous with the upturn after the “negative
heat release” portion of the heat release curve (due to charge cooling by vaporization of
mjected liquid diesel fuel). A typical apparent heat release plot is shown in Figure 1.1,
where the apparent negative heat release can be observed shortly after the ijector begins
to open. During this segment of combustion, the fuel at the leading portion of the jet
begins to break down i the form of poly-aromatic hydrocarbons (PAH). At this point,
soot begns to form at the leading edge of the jet as a result of the fuel-rich premixed

burn. The onset of the diffusion flame occurs near the end of the premixed burn. The

! Equivalence ratio is defined as the ratio of fuel-to-air mixture to the stoichiometric or chemically correct
fuel-to-air mixture. Fuel lean equivalence ratios are denoted by values between 0 and 1, and fuel rich
equivalence ratios are denoted by values between 1 and 4, typically.

3
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diffusion flame is defined as the boundary between the fuel-rich jet and the surrounding
volume. This thn area is very high in temperature and tends to shorten the liquid

penetration length by facilitating vaporization.
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Figure 1.1  Typical heat release for conventional diesel combustion in a 1.9L VW TDI
engine

For the last part of premixed burn, the jet continues to penetrate into the cylinder,
leading to the mixing controlled phase. Figure 1.2 shows a fully developed flame in the
mixing controlled phase, also referred to as the second stage of conventional diesel
combustion. As previously indicated, the diffusion flame is a high temperature area on
the periphery of the jet; these high temperatures are responsible for both soot oxidation
and thermal NO formation. Therefore, the size of the diesel jet will likely be decisive in
controlling these phenomena. During mixing controlled combustion, soot is first created

outside the fuel-rich (equivalence ratio of 3 to 5) premixed flame. As soot moves down

4
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the jet to the head vortex, particle growth continues, leading to large soot quantities in the
head vortex region. A major benefit of dual fuel combustion is the smaller diesel jet
required for ignition, therefore reducing NO and soot formation regions in size. Instead,
a significant portion of energy comes from the lean, well-mixed air-fuel mixture in the

surrounding chamber.

Scale (mm)

I Liquid Fuel Fuel-Rich Premixed Combustion
Rich Vagor- [l Initial Soot Formation
Fuel/Alr Mixiure pa thermal NO Production Zone
Diffusion Flame s 5001 Oxidation Zone

Low ) High
Soot Concentration

Figure 1.2  Mixing controlled combustion [Dec 1997]

1.1.2  Soot Particle Size

Particulate emissions, while regulated as a whole on a mass basis, vary widely in
terms of particle size. This is an important observation in terms of dual fuel combustion
because although the PM mass may decrease, the number of particles may increase
significantly. ~ As exhaust emissions, different sizes of particles have the potential to
affect the environment in different ways. Fine particle concentration, for instance, has
shown an association with adverse health conditions [Dockery and Pope 1997]. In

addition, particles that are non-toxic n the pm range may be toxic in the nm range.
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Therefore, it is important to understand what size particles are produced by a given mode
of combustion.

There are primarily two “modes” of particulate formation referenced m diesel
particulate literature. The accumulation mode primarily consists of particles in the 0.1-
0.3 pum range, a state in which solid carbonaceous material and any material it absorbs
resides [Kittelson 1998]. Kittelson states that the nucleation mode comprises particles in
the 0.005-0.05 upm range, which usually consists of wvolatile organic and sulfur
compounds formed during exhaust cooling and may contain carbon and metal
compounds. However, de Filippo and Maricq [2008] show that not all nanoparticles exist
mn a volatile state. It is observed that some nanoparticles formed in light-duty engines
remain non-volatile to greater than 400 degrees Celsius. According to de Filippo and
Maricq, it is not known how two modes of nonvolatile particles can originate
simultaneously during diesel combustion, but nonvolatile nanoparticles can be trapped by
DPFs with the same efficiency as nucleation mode particles. Regardless of volatility,
almost all particulate mass emitted from diesel engmnes is i the fine particle
(accumulation) range and almost all contribution to the particle number arises from the
nanoparticle (nucleation) range.

Particle size in engine exhaust is affected by operating conditions and hardware
such as aftertreatment systems, etc. Lu et al [2012] indicate that primary particle size
decreases with combustion duration but increases with combustion temperature. As
opposed to conventional combustion, dual fuel combustion duration is seen to increase at
low loads due to the flame propagation combustion mode, likely resulting in smaller

particle sizes. In addition, regions with a high local temperature are typically smaller

6
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with dual fuel combustion, likely resulting in smaller particle sizes. In addition to
combustion mode effects, increasing engine speed is likely to decrease the particle size

and increasing engine load will increase particle size.

1.2 Recent Developments in Dual Fuel Combustion
1.2.1  The Dual Fuel Combustion Concept

A dual fuel engine is a compression ignition engine in which a significant fraction
of the fuel chemical energy mput arises from a low-cetane fuel (usually gaseous)
nducted with the intake air to form a lean premixed fuel-air mixture, which is ignited
with timed direct ijection of a high-cetane pilot fuel (e.g., diesel) near top dead center
(TDC) [Karim 1987]. Dual fuel engines offer the ability to operate on a variety of
alternative fuels, while maintaming good fuel conversion efficiencies at high loads and
producing low exhaust emissions of NOx and PM [Stewart et al. 2007, Srinivasan et al.
2007]. On the other hand, dual fuel combustion can also lead to higher levels of
unburned hydrocarbons (THC) and carbon monoxide (CO) emissions and lower fuel
conversion efficiencies, especially at low loads.

Some commonly used gaseous fuels in dual fuel engine applications include
methane (or natural gas, whose primary component is methane) [Gurgenci and
Aminossadati 2009, Papagiannakis and Hountalas 2003, Krishnan et al. 2002, Tao et al
1995], propane [Poomnia et al. 1999, Stewart et al. 2007], hydrogen [Bose and Banerjee
2012] and a variety of other low heating value fuels such as producer gas, landfill gas,
and biogas [Karim 2003, Ramadhas et al. 2008]. In the United States, methane and
propane are very attractive for stationary power generation and other off-highway

applications because of the existing infrastructure for production and delivery of these
7
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fuels. Moreover, the conversion of existing diesel engines to operate in dual fuel mode
requires very little change to the engne hardware; consequently, these engmes retain

their ability to operate solely on diesel, if necessary.

1.2.2  Performance and Emissions of Dual Fuel Engines

Compared to conventional diesel engnnes, the typical emissions benefits
associated with dual fuel engmnes include the simultaneous reduction of PM and NOx
emissions. Particulate matter (soot) is reduced because a large part of the fuel energy is
released due to combustion of the lean premixed fuel-air mixture, which is nearly devoid
of locally-rich premixed regions that are encountered in conventional diesel spray
combustion [Weaver and Turner 1994]. This reduces the opportunity for PM formation,
and therefore, the overall PM emissions are decreased. Oxides of nitrogen are associated
with high local temperatures and the residence times of these high temperature regions.
The NOx emissions have been shown to scale directly with pilot quantity [Karim 1987,
Abd Alla et al. 2000]. This trend appears to be consistent with Dec’s conceptual model
of diesel combustion [Dec 1997], which states that NOx is formed on the periphery of the
diesel jet. Since a large part of the fuel energy in dual fuel combustion arises from the
lean premixed fuel-air mixture, the pilot diesel sprays are smaller, resulting in smaller
regions with high local temperatures, and consequently, NOx formation is lower.

For part-load operation, however, CO and THC emissions may be higher with
dual fuel combustion [Karim et al. 1993]. At low load conditions, the gaseous fuel-air
mixture is very lean which results in slow combustion rates and low bulk temperatures
during combustion. Shoemaker et al. [2012] discuss how low bulk temperatures during

dual fuel combustion reduce the CO to CO:z reaction rate, causing mcreased CO
8
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emissions.  Simultaneously, high THC emissions are caused by slow overall burn rates,
resulting n bulkk quenching of the in-cylinder mixture. Several strategies [Karim 1991,
Ishiyama et al. 2000] have been explored to improve dual fuel part-load operation,
including higher primary fuel concentrations, larger pilot quantities, intake charge
heating, partial air throttng, variable pilot mjection timing, and primary fuel
stratification.

At high loads, fuel conversion efficiencies (FCEs) for dual fuel combustion are
similar to typical values for diesel combustion. However, the specific efficiency trends
tend to vary with the choice of primary fuel. For example, Gibson et al [2011] showed
that diesel-ignited propane combustion yielded higher FCEs than diesel-ignited methane
combustion at similar conditions, which was attributed to the higher reactivity and
lammnar burning velocity (LBV) of propane compared to methane. At low loads,
however, FCEs typically decrease with increasing percent energy substitution (PES) from
the primary fuel  Several reasons are attributed to this loss in efficiency. Low
temperatures and lean fuel-air mixtures lead to incomplete flame propagation and partial
oxidation, leaving unutilized fuel energy to be expelled with the exhaust gases. Another
reason may be the late combustion phasing (delayed occurrence of the crank angle at
which fifty per cent of the cumulative heat release occurs (CAS50)). As the bulk of the
heat release occurs later in the expansion stroke, less work is transferred to the piston and
more energy is expelled with the exhaust gases or lost as heat transfer to the cylinder

walls, thus reducing FCEs.
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1.2.3  Fuels Used in Dual Fuel Engines

As mentioned previously, a significant amount of research has been performed to
understand the performance and emissions characteristics of dual fuel engnes utilizing
propane and methane as the primary fuels. Methane is one of the most popular primary
fuels used in dual fuel applications due to its excellent resistance to knock and relatively
high lower heating value (LHV) compared to diesel [Karim 2003]. Propane is also
attractive in terms of its energy content but exhibits relatively weaker knock resistance
compared to methane. The values of RON, MON, and LHV for these fuels are shown in
Table 1.1 [Heywood 1988]. While the increased reactivity of propane results in faster
burn rates and potentially higher FCEs, the engine operating range (viable speeds and
loads) may be limited by either end-gas knock or premature propane autoignition. Fuel
storage in the liquid state is more easily achieved with propane than other gaseous fuels.
In order to store natural gas in a liquid state, for example, requires the fuel to be
cryogenically stored, which requires both energy and heavy insulation. The operational
mixture lLimits of methane, propane, and hydrogen in both spark ignition engmnes and
compression-ignited dual fuel engines have been mvestigated by Bade Shrestha and
Karim [2006]. From these mvestigations, it is evident that dual fuel engine operation,
especially at low loads, is limted by inconsistent ignition, among other operating
variables.  Therefore, there is a clear need to perform a detailed characterization of

ignition processes in dual fuel engines.

10
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Table 1.1

Fuel Properties

Fuel Methane Propane Diesel
RON 120 112 N/A
MON 120 97 N/A
LHV (MJ/kg) 50 46.4 43.2

1.2.4  Ignition Delay in Dual Fuel Engines

Combustion in dual fuel engnes typically occurs after an ignition delay (ID)
period. The ID period in dual fuel engines has been studied for several years [Nielson et
al. 1987, Karim et al. 1989, Liu and Karim 1995, Gunea et al. 1998, Prakash and Ramesh
1999] but requires further investigation to quantify the effects of specific variables (e.g.,
overall equivalence ratio, PES, etc.) on the magnitude of the ID period. Understanding
the ID period is important as it influences the ensuing combustion process as well as
engine performance and emissions. Ignition delay is defined as the period from the start
of mjection (SOI) of the pilot fuel to the start of combustion (SOC), which must be
defined precisely and consistently. The length of ID is primarily governed by the type of
primary fuel used, the intake temperature, the pilot mjection timing, and the overall
equivalence ratio [Karim et al. 1989]. A typical trend observed by Liu and Karim [1995]
using natural gas as the primary fuel shows that for a given pilot quantity, the ID will
increase to a peak as the overall equivalence ratio is increased, decrease to a minimum
before the stoichiometric ratio, and then increase again toward misfire as the
stoichiometric ratio is approached and surpassed. In any case, it is well known that the

ID in dual fuel engmes is affected by increasing PES and increasing equivalence ratio.
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1.2.5 Dual Fuel Combustion

In addition to ignition delay, understanding the combustion process in dual fuel
engines is very important to maximizing the performance and emissions benefits
associated with dual fuel combustion. Dual fuel combustion normally occurs in three
stages [Karim 2003]: (1) ignition of the pilot fuel, (2) ignition of the fuel-air mixture near
the pilot spray, and (3) combustion of the remainder of the primary fuel-air mixture by
flame propagation. Together, these phases affect the phasing (CA50) and duration of
combustion, which may not be consistent for all operating conditions. Papagiannakis and
Hountalas [2004] show that at low loads, combustion duration for dual fuel combustion is
longer than the corresponding diesel-only condition, whereas at high loads, it is shorter.
It is the author’s hypothesis that the combustion phasing and duration will affect
performance and emissions of the engmne. For instance, a shorter combustion duration
phased near TDC will have a higher FCE because more energy is available during the
time when it can transfer the most work to the piston. It is likely that this type of
combustion will have less CO and THC emissions because the high buk gas
temperatures will facilitate complete fuel oxidation. In turn, a long, delayed combustion
process may yield low FCEs and increased THC (quenched flame) or increased CO

(incomplete fuel oxidation) emissions due to lower bulk gas temperatures.

1.2.6 Knock in Dual Fuel Engines

One of the lmiting factors of dual fuel combustion’s range of operation is the
phenomenon commonly referred to as “knock.” Knock in an mnternal combustion engine
generally refers to undesirable auto-ignition of the fuel air mixture, accompanied by an

acoustic ringing or “knocking” sound. Fuels are rated based on resistance to knock using
12
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reference fuels and variable compression ratio engnes resultng m RON and MON
values. A fuel with a higher octane rating has a higher resistance to knock than a fuel
with a lower rating. The RON wvalue is typically the higher of the two octane ratings.
The MON value relates more closely to the behavior of the fuel while under load.

The most common form of knock is end-gas knock, where the pressure developed
by an oncoming flame front is sufficient to cause auto-ignition of the unburned air-fuel
mixture [Heywood 1988]. This type of knock is common during aggressive operation of
spark ignition engines, but may also be observed during dual fuel combustion. Ignition
of the pilot fuel facilitates ignition of the surrounding air-fuel mixture, which then
propagates through the remamning chamber. If the primary fuel’s resistance to knock is
msufficient, the unburned end gas mixture may auto-ignite, causing knock. Extended
end-gas knock operation is highly undesirable as it may cause pitting of the piston or
even catastrophic failure of the engine.

The other type of knock, referred to as diesel knock, occurs when the rate of
pressure rise is too high [Kubesh and Brehob 1992]. In conventional diesel engines, this
occurs with premature injection when conditions will not yet facilitate diesel auto-
ignition. The longer ignition delay period allows for a large fraction of the diesel to be
premixed, causing an undesirable rate of pressure rise when the fuel eventually burns.
Similarly, in HCCI engnes at sufficiently high load, a rapid rate of pressure rise can
facilitate an acoustic resonance causing the engmne to knock [Dec 2009]. In dual fuel
engines at high PES and high loads, auto-ignition of the air-fuel mixture is possible even
before the diesel pilot, which can cause a rapid rate of pressure rise [Polk et al 2013].
This is caused by high mn-cylinder temperatures due to high bulk temperatures at these

13

www.manaraa.com



loads. In the dual fuel combustion mode, it is possible that diesel knock and end-gas
knock could occur in the same cycle. For this reason, knock is often a limiting factor in

high load, high PES dual fuel operation, depending on the primary fuel

1.2.7  Cyclic Combustion Variability in Dual Fuel Combustion

Another limiting factor of dual fuel combustion’s range of operation is cyclic
variability, often at low load conditions. High concentrations of primary fuel in dual fuel
combustion can cause a high coefficient of variation (COV) of indicated mean effective
pressure (IMEP). Mean effective pressure refers to an engne size-normalized metric
quantifying engine load, and the “indicated” qualifier refers to values calculated from the
cylinder, as opposed to at the crank. The IMEP of a combustion cycle is sensitive to
metrics such as peak m-cylinder pressures, ignition phasing, combustion phasing, and
combustion duration. A low COV of IMEP, therefore, is a good indicator of a consistent
combustion process and the engine work output.

One source of variability in dual fuel engines is believed to be the consistency of
ignition and combustion phasing [Srinivasan e al. 2003]. For injection timings near
TDC, Srinivasan et al. [2006] states that high COV of IMEP in dual fuel engines
operating at low load are likely a result of deteriorating combustion phasing. A retarded
ignition phasing (injection near TDC) further retards the combustion phasing, even into
the expansion stroke. This is due to the bulk of energy release coming from flame
propagation. With flame propagation occurring during the expansion stroke, the flame is
susceptible to quenching, resulting in inconsistent combustion phasing.

The use of EGR may further increase the variation of combustion. Lower

temperatures and increased diluents will contribute to flame quenchng and therefore
14
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inconsistencies in combustion phasing. In addition, partially burned fuel emissions, the
quantity of which may vary from cycle to cycle, may be partially recycled through the
use EGR. Varyng the mitial mixture constituents has the potential to further increase

variations in both ignition and combustion phasing,

1.3 RecentDevelopments in Low Temperature Combustion
1.3.1  Concept

A series of advanced combustion strategies, commonly referred to as low
temperature combustion (LTC), have received a large amount of attention due to their
effectiveness in simultaneously reducing engine-out NOx and soot emissions [Kamimoto
and Bae 1988, Akihama et al 2001, Kook et al 2005, Dec 2009]. Because NOx
emissions are generally formed during combustion when locally high temperatures
exceed a certain threshold value (~ 2000 K), one goal of LTC is to reduce local n-
cylinder temperatures below this threshold. In addition, locally rich areas must be
avoided to prevent the formation of soot. These criteria create a region on an equivalence
ratio (normalized air-fuel ratio) versus local temperature plot known as the LTC regime,
shown in Figure 1.3. The central idea in LTC is separation of the injection and ignition
events (increase ignition delay), which allows for sufficient mixing to reduce local
temperatures below the NOx formation threshold and local equivalence ratios below the

soot formation threshold.
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Figure 1.3  LTC equivalence ratio versus temperature [Dec 2009]

1.3.2 LTC Methods

There are several known strategies for limiting combustion to the LTC regime,
many of which are reviewed i Dec’s advanced compression ignition engine paper
[2009]. Early attempts to promote mixing and reduce high local equivalence ratios
mvolved intake-port premixed fuel injection [Ryan and Callahan 1996]. For this method,
significant intake heating was required to facilitate adequate evaporation which limited
operation due to knock; therefore, compression ratios had to be reduced.

Direct injection techniques were investigated to overcome vaporization issues.
Very early direct injection was attempted by Iwabuchi et al [1999] and Akagawa et al.
[1999]. By imjecting during the compression stroke, it was hoped that increased
turbulence and density would facilitate mixing. It was found that wall-impingement was
an issue with this injection strategy, and “softer,” more dispersed injection must be used
to prevent impingement and puddling of the ijected fuel However, these

unconventional jectors lack the ability to return to conventional diesel combustion at
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high loads. Dual mjection schemes, as employed by the Toyota “UNIBUS” system
[Yanagihara 2001], employ conventional injectors, injecting part of the fuel very early to
promote mixing and the remainder of the fuel near TDC, but impingement can still be an
issue with this strategy. Narrow included angle injection [Walter and Gatellier 2002] and
using dual njectors [Duffy 2004, Sun and Reitz 2008] are additional early njection
strategies that have been investigated. @ Because of diesel’s high cetane number,
autoignition and end-gas knock can be an issue with early injection techniques. To
combat this issue, almost all early injection techniques employ cooled exhaust gas
recirculation (EGR) to slow the combustion process and prevent autoignition [Akagawa
et al. 1999, Walter and Gatellier 2002].

Another approach to LTC injection is to inject fuel late, near cylinder TDC,
allowing precise control of ignition and combustion phasing [Kook et al. 2005, Ojeda et
al. 2008]. To facilitate mixing, high fuel injection pressures and injectors with very small
nozzle orifices are used, which cause rapid atomization. In addition, strategies such as
mjecting during the expansion stroke increase the ignition delay [Kimura et al. 2001],
which allows more time for air-fuel mixing. In addition to late injection, cooled EGR,
lowered geometric compression ratios or late IVC closing (to reduce the effective
compression ratio) may also be employed to extend the ignition delay and promote
mixing.

In addition to ijection strategies, large amounts of cooled EGR have been shown
to reduce combustion temperatures to the LTC regime, indicated by minimal NOx and
PM emissions. Kook et al [2005] investigated the effect of EGR over a wide range of
mjection timings, as shown in Figure 1.4. It is shown that NOx emissions are suppressed
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over a range of injection timings before TDC with heavy quantities of simulated EGR
(represented by varying intake Oz concentration), while similar operating conditions with
no EGR (21% intake O2) produced excessive NOx emissions. Soot reduction using
cooled EGR is a complex process due to the competition between soot formation and
oxidation processes [Dec 2009]. Akihama et al. [2001] shows that smoke can be greatly
reduced with a large quantity of cooled EGR; however, as the trend in Figure 1.5 shows,
smoke emissions will first increase before decreasing with increasing cooled EGR.
Experimentally, PM emissions are often referred to as smoke when not measured
gravimetrically,. ~ The initial rise in soot emissions and associated reduction in NOx
emissions, when air-fuel ratio is reduced from 40 to 23, is likely the result of reduced
combustion temperatures causing incomplete soot oxidation. At air-fuel ratios less than
23, temperatures in fuel rich regions are sufficiently low to suppress soot formation to a
greater degree than soot oxidation [Dec 2009]. However, as EGR is further increased to
create air-fuel ratios less than 15 (the stoichiometric ratio), CO and THC emissions
increase along with a corresponding increase in brake specific fuel consumption (BSFC).
At this condition there is not enough air to fully oxidize the CO and THC, lending to their

sharp increase.
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Figure 1.4

Figure 1.5
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1.4 RecentDevelopments in Dual Fuel LTC

Dual fuel LTC combustion is a relatively new concept which marries the
established dual fuel concept with modern, LTC capable engnes. Different strategies
tend to concentrate on gaining specific advantages (ie. alternative fuel utilization), but
overall dual fuel LTC concepts target high efficiency, low emissions operation.
Reactivity controlled compression ignition (RCCI) and advanced low pilot-ignitied

natural gas (ALPING) are two concepts utilizing both dual fuel and LTC concepts.

141 RCCI

The RCCI concept (also called dual fuel HCCI and PCCI) is a relatively recent
development which addresses limitations with single fuel homogenous charge
compression ignition (HCCI) and premixed charge compression ignition (PCCI)
combustion by controlling mixture reactivity using in-cylinder fuel blending of diesel and
gasolne. In HCCI combustion, fuel and air are premixed and compression ignited; the
mixture is made dilute with the use of EGR which is used to control the phasing of
combustion.  Volumetric ignition of a homogenous air-fuel mixture facilitates rapid heat
release, high efficiency operation, and low NOx and soot emissions. The HCCI and PCCI
combustion modes are very similar in that fuel is mjected very early in the cycle;
however, the air-fuel mixture n PCCI combustion is stratified in order to control the rate
of heat release. Both HCCI and PCCI combustion modes are very efficient due to their
volumetric or nearly volumetric heat release but have limited ranges of operation due to
rapid rates of pressure rise and relative lack of precise control of combustion phasing. In
determining what fuel would be best with these modes of combustion, both diesel and

gasoline have been used in PCCI research, each having associated advantages and
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disadvantages [Liu et al. 2008, Opat et al. 2007]. Using port fuel injected (PFI) gasoline
and early cycle direct ijected diesel, Kokjohn ef al. [2009] demonstrated that global
reactivity (ie. fuel blending) is capable of controling HCCI combustion phasing but fuel
stratification is needed to control the rate of heat release. Splitter et al [2013] have

demonstrated RCCI operation nearing 60 percent thermal efficiency.

14.2 ALPING

The ALPING concept was developed using early injection strategies in
combination with conventional dual fuel implementation. As with conventional dual fuel
combustion, natural gas is fumigated with the intake ar forming a lean air-fuel mixture.
A very small high-cetane pilot quantity (1-2 percent of the overall fuel energy) is ijected
very early (e.g. 60 DBTDC) which allows for adequate mixing. Because natural gas is
relatively unreactive, low load operation was initially unstable but was improved by
heating the intake ar, which mmproved thermal efficiencies significantly [Srinivasan et al
2006]. Using the ALPING concept, Srinivasan et al. [2003] demonstrated a 98 percent
reduction m NOx emissions compared to conventional diesel operation. In subsequent
research, it was shown that hot EGR was effective n retarding combustion phasing and

reduced HC emissions by about 25 percent [Srinivasan et al. 2007].

1.5 Objectives
The goal of this dissertation is to implement, optimize, and assess low
temperature dual fuel combustion in a compression ignition engine. Propane is chosen as

the primary fuel for dual fuel LTC due to its higher reactivity and therefore potentially
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higher FCEs as well as its benefits in terms of storage. This goal is achieved by
completion of the following objectives:

1. A four-cylinder, 1.9 liter Volkswagen TDI engine is utilized to conduct
diesel-ignited propane and diesel-ignited methane combustion experiments
and to perform ignition delay and combustion analyses using mn-cylinder
pressure and energy release measurements. These results are provided to
further the understanding of dual fuel combustion and how it affects both
the performance and emissions of a light-duty dual fuel engine.

2. A six-cylinder, 12.9 Iliter heavy-duty PACCAR MXI10 engne is
commissioned on an open architecture engmne controller as a platform for
diesel-ignited propane dual fuel LTC. The original equipment (OE) engine
control module (ECM) is “reverse engineered,” transferring the control
logic to a LabVIEW-based Drivven controller, mimicking original engine
performance yet allowing complete access to control parameters. This
objective is critical in allowing diesel-ignted propane dual fuel
combustion to be explored comprehensively on a modern diesel engine
platform.

3. The PACCAR engine setup and Drivwen system are used to perform
baseline diesel-ignited propane dual fuel combustion experiments,
mplement diesel-ignited propane low temperature combustion on the
engine, and finally optimize dual fuel LTC wusing advanced injection

strategies, boost pressure control, and cooled EGR.  These results
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strengthen the outlook of diesel-ignited propane LTC while bringing to

light the challenges to be overcome m its development.

1.6  Organization of the Present Work

This work is organized as a series of sequential experiments and analyses
mtended to further the understanding of dual fuel combustion and dual fuel LTC. The
present chapter outlines the primary objectives and past research on relevant topics. The
following chapter defines various equations and metrics used throughout the text. The
third chapter outlines the experimental setup of the Volkswagen TDI engne and its
mstrumentation, including data acquisition (DAQ). This engine setup is used for the
experiments performed in chapters four and five. The fourth chapter outlines a detailed
mvestigation of ignition delay for diesel-ignited methane and diesel-ignited propane dual
fuel combustion. Ignition delay trends, engine ignition delay trends, and cyclic
variability of the start of combustion are examined. Dual fuel combustion is further
examined in chapter five, which provides a detailed characterization of the dual fuel
combustion process and relates it to performance and emissions metrics. Chapter six
outlines the experimental setup of the MX10 12.9L heavy-duty diesel engne, the Drivven
open-architecture controller, instrumentation, and DAQ. Two sets of experiments are
related in chapter seven. The first corresponds well with the VW experiments, in which
only the diesel quantity is changed and other controllable parameters remain un-
optimized for dual fuel combustion. The second relates testing designed to optimize both
PES and emissions for dual fuel LTC. In chapter eight, conclusions are drawn and
summarized from the three primary investigations. Finally, recommendations are given

in chapter nine for future experimental research nvolving the dual fuel LTC concept.
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CHAPTERII

DEFINITIONS

2.1 Steady State Calculated Parameters

Relevant engine performance parameters overall equivalence ratio (®overann) and
percent energy substitution (PES) of the primary gaseous fuel are defined below:

i, LHY,
i, LHV, + 11, LHV,

(%) (2.2)

cDovemll = R
m,
m, + mg

In Equations 2.1 and 2.2, m refers to the mass flow rates of diesel (subscript d),

PES = x 100% (2.1)

gaseous fuel (subscript g), and air (subscript a), and LHV refers to the corresponding
lower heating values. The stoichiometric air-fuel ratio (A/F)s is defined as the ratio of
the mass of stoichiometric air required for complete oxidation of both the pilot and the
primary fuels mto CO2 and H20 to the mass of fuel. Therefore, (A/F)st was dependent on
the primary fuel type (methane or propane) as well as the PES with the corresponding

primary fuel.

2.2  In-cylinder Pressure and Apparent Heat Release Rates

Engine position resolved measurements (e.g., m-cylinder pressure) and cylinder

volume phasing were ensured by shifting the transient data by an amount determined
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while motoring the engne (to avoid crossover in the compression and expansion curves
in the motoring log P — log V diagram). An example of this plot is shown in Figure 2.1.
In this plot, the isentropic compression and expansion of the cycle should be linear, of a
slope equal to the polytropic coeflicient (ie. the specific heat ratio, gamma). A correct
phasing will have no “crossover,” or loop near TDC, but wil have very straight
compression and expansion lines. For verification, inspection of the pressure curve
should show peak pressure to be about 0.5 CAD before top dead center (this value varies
with engine speed and compression ratio). The peak pressure exists shortly before TDC
(and not right at TDC) because, in the very small window near TDC, heat transfer out of
the cylinder is greater than the added mternal energy due to compression, causing an

overall decrease in temperature and therefore pressure.

Lyander Pressure - |k=a)
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e e e et .

e e o .
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0141 1 228855

Figure 2.1  Logarithmic pressure versus volume plot of engine motoring

Note: Separation in the gas exchange portion of the plot (lower loop) is due to intake
boost conditions. It is speculated that noise i the plot is due to intake and exhaust valve
closings.
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The pressure data was also scaled by the intake manifold pressure at bottom dead
center (BDC) before the compression stroke. In addition to ensemble averaging (ie.,
averaging over ‘“n” consecutive cycles), the pressure profiles were smoothed by a
“boxcar” style filter, averaging six data points on either side of a given data point to

eliminate noise in the pressure data. The apparent heat release rate (AHRR) was then

calculated using the following equation [Heywood 1988]:

atrr@9)=—_p L P (2.3)
y—1 do y-1 do

The instantaneous volume (V) was calculated from the known compression ratio,
bore, stroke, and connecting rod lengths, and the pressure and volume derivatives (dP/d6
and dV/dO) were calculated numerically using a fourth-order central difference method.

In Chapter 4, the specific heat ratio (y) was calculated using the correlation:

y(T) =4.5333x10"T7* -1.74x10" T +1.464667 (2.4)

And in Chapter 5, the specific heat ratio (y) was calculated using the correlation

from Brunt [1998]:

7(T)=1x10"T? -6x10°T +1.338 (2.5)

The global in-cylinder temperature was found using the ideal gas equation of

state, and the mass trapped in the cylinder was found from the same equation while using

the mntake manifold temperature, volume, and in-cylinder pressure at intake valve closure
(IVC).

In Chapter 7, the specific heat ratio (y) was given as a constant value, 1.34,

because a built-in calculation based on temperature was not available in the Drivven
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Combustion Analysis Toolkkit (DCAT). In addition, the heat release rates presented in
Chapter 7 represent the gross heat release rate, accounting for heat transfer using the
correlation from Hohenberg [1979] and a constant wall temperature of 480 degrees

Kelvin.

2.3 SOI, SOC, and Ignition Delay
The ignition delay period is defined as the difference between the start of diesel

fuel mjection (SOI) and the start of combustion (SOC), given in the following equation:

ID =S0C —-S0I (2.6)
In Chapters 4 and 5, the SOI is defined as the crank angle at which mjector needle lift
reaches 5 percent of the maximum needle lift. The SOC is defined as the crank angle at
which the AHRR first becomes positive. ~ These parameters are shown in Figure 2.2. To
elimnate confusion caused as a result of noise in the AHRR curves near SOC (leading to
AHRR oscillations about zero and maccuracies in SOC estimation), the last crank angle
at which the AHRR curve becomes positive (after any previous oscillations) is taken as
the SOC. In Chapter 7, the SOI is defined as “apparent” SOI (IDa), because injector
needle lift was not available. Instead, IDa is defined as the engmne position at which the
controller applies voltage to the injector solenoid. Also in Chapter 7, the SOC is defined
as CAS, or the location at which 5 percent of the total mass inside the cylinder has

burned, which was a metric available n DCAT.
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An important parameter used to quantify the phasing of combustion was the

CA50, which was defined as the crank angle at which fifty percent of the cumulative

(integrated) heat release occurred.

To quantify the overall combustion duration, the

CA10-90 was defined as the difference between the crank angle at which 10 percent of

cumulative heat release occurred and the crank angle at which 90 percent of cumulative

heat release occurred.
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Following Kalghatgi et al [2006], the engine ignition delay (EID) was defined as
the time elapsed between the SOI and the crank angle at which 50 percent of the

cumulative heat release occurred (CAS0 HR):

EID = CA50—-SOI (2.7)
As the EID definition incorporates CAS5S0 HR, EID was computed by numerically
mtegrating the AHRR curve from the SOC until the crank angle (determmed as CAS0
HR) at which the integral became one-half of the cumulative heat release. For diesel
mjection near TDC (as in the case of the VW experiments), the diesel fuel autoignited
fairly quickly after mjection, before it mixed well with the surrounding air. Kalghatgi et
al. [2006] defined the EID as a metric to identify the level of diesel-air mixing attained at
SOC with straight diesel operation. In general, the higher the EID, the better mixed the
diesel was with air at SOC. For dual fuel combustion, the EID, in addition to being a
measure of pilot diesel spray mixing, also provided some indication of the rate of
combustion of both the pilot diesel fuel and the gaseous fuel. Further, the EID also

provided an idea of how combustion phasing was affected by dual fueling.
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CHAPTER 111

EXPERIMENTAL SETUP — VOLKSWAGEN TDI ENGINE

3.1 TestCell Overview

The first set of experiments in the present work was performed using a
Volkswagen 1.9 liter TDI, iline four-cylinder diesel engine in a pre-existing test cell
The controllable parameters in these experiments were the engine speed, diesel fueling
rate, intake manifold (boost) pressure, and gaseous fuel flow rate. The engmne speed was
controlled with a Froude Hoffman AG80 (Imperial) eddy current dynamometer and the
engine torque was measured with a calibrated load cell  Diesel fueling rate was
controlled using the OE, or “stock,” engmne control module (ECM) with mput from a
throttle position sensor, which was activated by dynamometer control software. Intake
manifold pressure was controlled by activating a spring return wastegate valve using an I-
P (current-to-pressure) transducer, National Instruments hardware, and NI LabVIEW
software. Fmally, the primary gaseous fuel was metered by a manually controlled needle
valve and itroduced to the intake air upstream (before) of the turbocharger compressor.
Relevant engine details are given in Table 3.1. A schematic of the experimental setup is

given in Figure 3.1.
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Table 3.1

Figure 3.1

VW Engine Specifications

Parameter Value

Engine Volkswagen TDI
Cylinders 4, inline

Bore 79.5 mm

Stroke 95 mm
Connecting rod length 144.4 mm
Valves per cylinder 4

Nominal compression ratio 19.5:1

Displaced volume 1.9 liters
Injection system Mechanical

Aspiration Turbocharged w/ wastegate
EGR None
Engine Control OE ECM
Nominal pilot injection timing 4 CAD BTDC
— =T z
1 _I : =

| n?
Tt

o Engine |:| 1
Emisalons
Smoke

LEGEND
1: Venturi

2: Primary gasecus fuel

3z Corialis flavw mefer

Tamparat
Prassures
Flowrates
LABVIEW
DAQ
module

B: Six gas emissions bench
2: ¥W 1.9 TDI Engine
10; Eddy current dynamomeder

4: Piston-typa diasal flow meter  11: Drive shall

5, 6! Turbocharges
T: Smoke meter

Schematic

12: Data acquisition systam

of the Volkswagen experimental setup
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3.2 TestCell Instrumentation

Relevant instrumentation details are given n Table 3.2.

Table 3.2  Instrumentation Specifications
Data Type Sensor/Instrument Type Accuracy
Temperature Thermocouple K Greater: 1.1 °C or 0.4%
Pressure for venturi  Omega P X429 Absolute 0.08% FS BSL
Pressure for venturi  Omega MM Series Differential 0.08% FS BSL
Pressure for boost Setra 209 Gauge 0.25% FS
Mass air flow Flowmaxx Venturi
Mass gas. fuel flow  Micro Motion Coriolis 0.35% of reading
Vol. diesel flow Max Machinery 213 Piston 0.2% of reading
Smoke AVLA415S Filter 0'00_5 FSN + 3% of
reading
NO, ESA EGAS 2M CLD 1% FS
NO ESA EGAS 2M CLD 1% FS
THC ESA EGAS 2M FID 1% FS
CO-low ESA EGAS 2M NDIR 1% FS
CO-high ESA EGAS 2M NDIR 1% FS
CO, ESA EGAS 2M NDIR 1% FS
Cylinder Pressure Kistler 6056A Piezoelectric Lmnearity: 0.3% FSO
Needle Lift Wolff Controls Hall Effect
3.2.1 Steady State Measurements

Engine coolant, pre- and post-turbo air, ntake mixture, and post-turbo exhaust
temperatures were measured with K-type thermocouples. Typically, these were mounted
using 0.25 inch Swagelok compression fittings. The primary gaseous fuel (methane or
propane) mass flow rate was measured with an Emerson Micro Motion coriolis mass
flowmeter. Intake air mass flow rate was measured with a Flowmaxx venturi flowmeter.
Straight intake pipes with lengths of twenty pipe diameters upstream and ten pipe

diameters downstream were used to facilitate lammar itake arr flow. Diesel volume
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flow rate was measured with a Max Machinery Model 213 piston flowmeter. Diesel
mass flow rate was then calculated by multiplying by an assumed fuel density of 861.7
kg/m?. The absolute pressure in the test cell was measured with an Omega PX429
sensor, the differential pressure across the venturi air flowmeter was measured with an
Omega MM Series differential pressure transducer, and the mntake boost pressure was
measured with a Setra 209 pressure transducer. All gaseous exhaust emissions were
measured downstream of the turbocharger turbine. Gaseous emissions were routed
through an emissions sampling trolley to an integrated emissions bench (EGAS 2M)
manufactured by Altech Environnement S.A. (ESA) and smoke was measured with an
AVL 415S variable sampling smoke meter. Smoke emissions are given in filter smoke
number (FSN) and were sampled after 10 pipe diameters of straight exhaust pipe for

laminar flow.

3.2.2 Transient Measurements

Transient measurements such as cylinder pressure require an engine-position
based clock for data acquisition. A BEI optical encoder with 0.1 CAD resolution (3600
pulses per revolution) was used for this purpose. A custom crankshaft adapter and a
custom encoder bracket were designed and fabricated in-house to facilitate mounting.
The bracket was mounted rigidly with the engne (not attached to vibration-isolated
mounting points).

In-cylinder pressure was measured using a Kistler 6056A piezoelectric pressure
transducer mounted in a Kistler glow plug adapter. A Kistler 5010B charge amplifier

with a “medium” time constant setting was used to condition the signal output from the
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piezoelectric pressure transducer.  Needle lft was measured in a stock injector

mstrumented with a Wolff needle lift sensor coupled to a signal conditioner.

3.3 Data Acquisition
3.3.1 Hardware

A National Instruments PXI-1050 chassis and PXI-8110 controller were used as
the foundation of the DAQ system. An M-Series analog input card (PXI-6229) was used
to sample low-speed steady state data (engmne speed, load, etc.) and an S-Series analog
mput card (PXI-6123) was used to sample high-speed transient data (cylinder pressure
and mjector needle lift). An SCXI expansion chassis and a thermocouple conditioner and
amplifier (SCXI-1102B) were used to sample thermocouple temperature data. In
addition, the PXI chassis had analog output and power supply capabilities. In an effort to
be versatile, the hardware was mounted on a cart for mobility while the software was

programmed to accept user inputs for different channel configurations.

3.3.2 Software

The VI, or virtual instrument (LabVIEW program), used for this test cell
functioned both to monitor and to record steady state as well as transient combustion
data. Steady state data were sampled as analog voltage signals (0 to 10 V) at 100 Hz
Each incoming channel was scaled according to its respective calibration and time
averaged at 1 Hz. These data included dynamometer torque and speed as well as engine
pressures, temperatures, flow rates, and emissions values. After averaging, these data
were distributed to “indicators” in order to be displayed, and also used to process other

calculated values such as mass airr flow, BMEP, fuel conversion -efliciency, and
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equivalence ratio, among others. Mmimum and maximum thresholds were given to
critical values such as oil pressure, coolant temperatures, etc. which would trigger visual
mndicators in the case of an unsuitable engne operating condition.

The VI also had the ability to record and display transient data such as in-cylinder
pressure, injector needle lift, apparent heat release rate, and other calculated transient
values.  “On-the-fly processing” allowed for close monitoring of critical values such as
the maximum pressure rise rate (MPRR) and combustion phasing (CAS50).

The recording of engne-position synchronized data was enabled by the use of the
BEI optical encoder coupled to the engine crankshaft. The high-resolution signal (3600
pulses per revolution), or A pulse, was used as the sample clock for the analog mnputs of
cylinder pressure and ijector needle lift. The index (1 pulse per revolution), or Z pulse,
was used as the trigger which functioned to correctly phase the transient measurements.
While the Z pulse was physically located close to engine TDC, software shifting was
required for further accuracy because phasing of the pressure signal and cylinder volume
is critical for accurate heat release calculations. In order to determine whether the Z
pulse for a given engne revolution was for compression or gas exchange, data was
sampled for a predetermined number of cycles (in this case 100 cycles) plus one
additional cycle. A subset of the data was then taken from the raw array; the length of
the subset was determined by the number of cycles recorded and the array index was
determined by the phasing and shifting inputs. The phasing mput was determined by
examining the first cycle of raw data for its peak value and using its location to determine
whether or not to shift the array index by 360 degrees. The shifting input was determined
by manually entering a value while monitoring a log-log plot of cylinder pressure versus
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volume while motoring (spinning but not firing) the engine, as discussed with Figure 2.1.
An acceptable shifting nput value would locate the peak pressure approximately half a
crank angle degree before TDC and yield no ‘“crossover” in the log-log pressure versus
volume plot.

After phasing and shifting of the cylinder pressure and the mjector needle lift
data, the cycles were ensemble averaged, ie., the values of pressure at 0.1 CAD over
successive engine cycles were averaged, then for 0.2 CAD, for 0.3 CAD, and so forth,

resulting in a single cycle of pressure data, as follows (where N is the number of cycles):

P,=—%V P 3.1)

TN
In addition to ensemble averaging, the data were further smoothed with the use of

a “pboxcar” filter, or moving average, using M data pomts before and M data points after a

given point, as follows; M = 6 was used in this case:

WF - y:—Mp(Hj) (3.2)

As piezoelectric transducers by nature measure only dynamic pressure, the
cylnder pressure data was scaled, or “pegged,” according to the mntake manifold
pressure. An engine crank position during which the intake valve is open is chosen (in

this case BDC) and “pegged” to the intake manifold pressure, giving the data an absolute

reference. The simple equation for pegging is as follows:

Ppegi = Pi - PBDCintake + Pman (3.3)
Once shifted, phased, and scaled appropriately, the transient data can then be used

for monitoring and further analyses, such as IMEP, MPRR, heat release, and ignition
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delay calculations. All transient waveforms and values are recorded alongside the steady
state data. The front panel of the latest revision of the VI and an overview of the block

diagram are shown in Appendix A.
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CHAPTER IV

DUAL FUEL IGNITION DELAY

4.1 Introduction

Defined as the period between the start of igntion (SOI) and the start of
combustion (SOC), the ignition delay (ID) period influences the ensuing combustion
process as well as engne performance and emissions. The primary objective of this
chapter is to characterize dual fuel ID behavior with both propane and methane as

primary fuels and over a range of engine operating conditions.

4.2  Objectives
The objectives of this chapter! are as follows:

1. Investigate ignition behavior for dual fuel combustion on a stock
Volkswagen (VW) 1.9-liter turbocharged direct mjection (TDI) engine
with the stock electronic control module (ECM) using in-cylinder
combustion pressure data.

2. Compare diesel-ignted methane and diesel-ignited propane dual fuel
combustion IDs for a range of equivalence ratios and a range of engine

loads (BMEPs) and PES at a constant engine speed of 1800 rev/min.

I The essence of this chapter was published in the Proceedings of ASME ICEF2011 and has also been
accepted for publication in the ASME J Energy Resources Tech [Polk 2011].
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3. Quantify ignition delay effects on dual fuel combustion using engine

ignition delays (EID) and cyclic variation plots of SOC.

4.3 Experimental Procedure

All experiments were performed at a constant engine speed of 1800 rev/min
without any exhaust gas recirculation (EGR). As shown in Tables 4.1 and 4.2, two sets
of experiments were performed for both diesel-ignted methane and diesel-ignited
propane dual fuel combustion. The first set of experiments focused on understanding the
effects of the overall equivalence ratio (®overann) on ignition delay behavior for various
constant pilot quantity-based equivalence ratios (®piot). For a given pilot quantity
(constant Dpilot), the amount of primary fuel was increased to increase @overan and the
ignition delay behavior was recorded. This process was subsequently repeated for other
Dpilot values. In the second set of experiments, dual fuel ignition delays were examined
for mcreasing PES from the gaseous fuels at different brake mean effective pressures
(BMEP). For these tests, the BMEP was monitored and maintained at a specified value
while both the pilot diesel and primary gaseous fuels were adjusted based on
predetermined PES increments within +1.5 percent. The maximum PES stated in Table
4.2 was dependent on the primary fuel type and the BMEP. If the maximum is not
specifically listed for a given condition, then the last stated PES is the maximum for that

fuel at that condition.
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Table 4.1  Experimental Matrix for @overan Effects at Different (Constant) ®piiot

<& Constant @y =2

Increase in @,y With gaseous fuel
(Dpilot addition
+0.1 +0.2 +0.3 +04

0.2 M,P M,P M
0.3 M,P M,P M
0.4 M,P M,P M,P
0.5 M,P M,P M,P M
0.6 M,P M,P
M: methane dual fueling, P: propane dual fueling

Table 4.2  Experimental Matrix for PES Effects at Different (Constant) BMEPs

< Constant BMEP >

BMEP Percent Energy Substitution
(bar) 259 50% 75%  Max
2.5 MP MP MP M,P

5.0 M,P M P-47%
7.5 MP MP
10 M,P M P-45%

M: methane dual fueling, P: propane dual fueling

Each set of experiments was performed in the same session to reduce variations in
baseline operation and obtain reliable performance and emissions data. In addition, the
mtake boost pressure was held constant for a given ®piot or for a given BMEP. The
intake pressure chosen for each condition was based on the nominal boost pressure
possible (corresponding to the available exhaust energy) at the baseline diesel operating
condition (no gaseous fuel) at the given ®pilot or BMEP. Engmne coolant temperatures and
intake charge temperatures were maintained at 85+5°C and 35+5°C, respectively for all

experiments.
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4.4 Results and Discussion

The ignition delay period in dual fuel engnes is dependent on the primary fuel
used, piot quantity, intake charge temperature, and equivalence ratio [Lu and Karim
1995, Gunea et al. 1998, Prakash and Ramesh 1999]. In this chapter the ignition delay
behavior of two primary fuels, methane and propane, was investigated over a range of
pilot quantitics and equivalence ratios while intake temperatures were maintained
constant (35+£5°C). The experimental matrices shown in Tables 4.1 and 4.2 were
completed to the extent possible until the onset of engne nstability, excessive audible
engine noise (perceived knock), or a self-imposed maximum pressure rise rate (MPRR)
limit of 15 bar per crank angle degree (CAD) prevented further engine testing. For both
propane and methane dual fueling at low BMEPs, the maximum PES of the primary fuel
was limited by the onset of misfire or high coefficient of variation of IMEP. At high
BMEPs, engine instability limited methane dual fueling whereas extremely high MPRR
limited propane dual fueling.

When operating at constant BMEP and varying PES, the pilot quantity was
allowed to change with the gaseous fuel substitution, and consequently, the needle lLft
profile and the maximum needle lift also changed with PES. Therefore, considering the
definition used for the SOI (location of 5 percent of the maximum needle lift), if the
maximum needle lift changes, the recorded SOI would change even if the actual SOI did
not change. A seemingly obvious solution to this problem is to use a constant threshold
value for SOI. However, this definition did not work at very high PES (low pilot) where
the max needle lift did not even exceed the threshold value. If the threshold was set too

low, noise in the needle lift signal yielded a false SOI. Hence, a numerical average was
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taken of all SOIs based on the definition of 5 percent of the maximum needle lift, which

was then used to arrive at a constant nominal SOI of 4 CAD BTDC.

4.4.1 Ignition in Diesel-Ignited Propane Combustion
4.4.1.1 Equivalence Ratio Effects on Ignition Delay

The ignition delay trends for diesel-ignited propane combustion are shown for
different overall equivalence ratios (@overann) in Fig. 4.1. In this figure, each curve begins
with a baseline pilot-based equivalence ratio (Ppilot) ranging from 0.2 to 0.6 and each data
point after the baseline represents an increasingly higher concentration of propane,
leading to an overall equivalence ratio ranging from 0.2 to 0.8 or to the extent possible
while maintaining stability at lower ®piot values. In this set of experiments, the pilot
quantities are held constant for each ®piot. Therefore, “the baseline” at each Dpilot refers
to engine operation with diesel alone (no gaseous fuel addition). At lower @piot, the
addition of propane tends to increase the ignition delay slightly. Following Lu and
Karim [1995], this trend may be attributed to the reduction in in-cylinder temperature due
to the displacement of oxygen n the intake ar by the fumigated gaseous fuel (propane)

and the increased specific heat ratio of the mixture.
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Figure 4.1  Ignition delay vs. overall equivalence ratio for diesel-ignited propane
combustion, BMEPs range from 1 bar to 12.9 bar; boost pressure held
constant for each ®yilot value.

Another possible contributing factor to the ignition delay trends is the preignition
chemistry. As the propane-ar mixture is compressed in the cylinder, it is exposed to
increasingly high temperatures over a relatively long period, allowing ample opportunity
for low-temperature preignition reactions.  With small diesel pilot quantities, these
mtermediate products of partial oxidation of propane may compete with diesel ignition,
thereby extending the ignition delay period [Lu and Karim 1995]. As @it (and BMEP)
is increased, exhaust temperatures increase significantly. Thus, as @piot 18 increased at
constant engine speed, the intake fuel-ar mixture will be exposed to higher in-cylinder
temperatures due to hotter residual exhaust gases and hotter cylinder wall temperatures.
Therefore, it is hypothesized that as pilot quantity and BMEP increase, the extent of

partial oxidation in the fuel-ar mixture increases, further increasing the pressure and
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temperature in the cylinder. As diesel injection occurs at increasingly high in-cylinder
temperatures, diesel evaporation, which is controlled by mixing with the hot ambient
gases, becomes more rapid and the overall ignition delay period is reduced.

As shown in Fig. 4.1, at relatively high ®@overan and BMEPs, propane autoignition
occurred even before the start of diesel pilot mjection. This phenomenon can be
observed more closely in Fig. 4.2. The three cases shown in Fig. 4.2 employ relatively
large pilot quantities (Ppitot = 0.5 or 0.6) and Doverann = 0.7 or 0.8, all at high BMEPs. In
the top left plot (@pilet = 0.5, Doveran = 0.7), the separation between the needle lift (NL)
and the negative AHRR due to diesel evaporation after SOI can be seen clearly. Shown
below this plot are the cylinder pressure curve and the AHRR curve showing dual fuel
combustion progressing normally. The center plots show that with the same @piot and a
slight higher @overan of 0.8, propane begins to autoignite nearly simultaneously with the
start of diesel pilot injection, causing a very rapid rise in AHRR and high peak AHRR.
The plots in the far-right show that propane clearly autoignites before diesel is injected
for @pilet = 0.6 and Doveran = 0.8, causing more of a staged heat release (with pilot
mjection not aiding propane heat release until later), which results n a lower peak
AHRR. For these conditions where propane autoignites either at or before the SOI, the
ambient conditions (high temperatures and high @overal) are conducive to preignition
reactions in the premixed propane-air mixture to accelerate and release sufficient energy
to cause spontaneous ignition. It is important to note that these conditions did not lead to
“end-gas knock” that usually follows pilot ignition but premature autoignition of propane

even before SOL.
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Figure 4.2  Heat release, needle lift, and cylinder pressure profiles for one normal case
(no propane autoignition) and two cases with propane autoignition as
shown in Fig. 4.2

To examine ignition delay behavior further, Fig. 4.3 shows the cyclic variations in
SOC for a constant @piot of 0.5 and various @overann corresponding to Fig. 3. In this
figure, the “baseline” is the condition with @pilt = 0.5 and no propane substitution, while
each subsequent case refers to increasing propane substitution (e.g, +0.1 phi propane
corresponds to @overall = 0.6). At Doveral 0f 0.6 and 0.7, as the propane concentration is
increased, the average SOC is advanced (ID is shortened) and the variation m SOC

increases. Since intake temperature and intake boost pressure were held constant and no
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EGR was wused, the primary factors influencing ignition behavior were oxygen
displacement, residual exhaust gas temperatures, and propane concentration. As Doverall
(and BMEP) is increased, the m-cylinder temperatures were likely higher causing the
SOC to occur earlier but with greater cyclic variabilty. However, upon reaching the
pomt of propane autoignition (Poveran = 0.8), the variation of SOC begns to decrease

significantly.

o ., [
. y . y ¥ L. -
N s T i 78 -8
g [ S e TT_ @ F )
-3 — [ L M '
'E ki ;_'url . . = ,_."":E
a _ L
< 0 -
1) ¢ @ LN
L -4 ! i an 4" Y
o i ' T ' _.l.‘ ]
w o W Tl T : “a oA
— b afg B Ma A M Ak
N e aﬁf? A A A
1 &
-2 a :"A‘f ‘Af 1.11&"* A
Y F ' Y i "
- &
g | T | T | T T |
V] 20 40 a0 an 100

Cycle Number

4 4 @ 05PhiBaseline 8 B B 0.2 PhiPropanes
H B B rniPropane & 4 4 +0.3 PhiPropans

Figure 4.3  Cyclic variations in SOC for ®piot =0.5 and various propane
concentrations (®@overal1 =0.6, 0.7, and 0.8) with a constant boost pressure of
1.4 bar and BMEPs ranging from 7.2 to 11.2 bar

standard deviations of SOC were 0.16, 0.25, 0.6, and 0.4 CAD for ®overan =0.5, 0.6, 0.7,
0.8, respectively.

To clarify the effects of @overanl on ignition and the ensuing combustion process,

engine ignition delay (EID) trends are shown in Fig. 4.4. For dual fuel combustion, the
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EID is a measure of the relative phasing of the combustion process (CAS0 HR) with
respect to the SOI. The EID increases with increasing @pilot. For pure diesel operation at
different BMEPs (the first data point in various curves), the EID seems to exhibit a linear
trend with increasing BMEP. While increasing @pilot decreases ID (see Fig. 4.1), it also
increases the duration of combustion, thus delaymg CAS5S0 HR and increasing the overall
EID. For a given ®piot, Increasing propane concentration enriches the homogeneous
fuel-air mixture entering the engmne. Due to the fact that a greater fraction of the
combustion energy is released more rapidly due to flame propagation at higher propane
concentrations, EID is decreased. At lower @pilot, the increase in EID is attributed to the
mitial increase in ignition delays with increasing propane concentrations. By contrast, as
Dpilot 15 increased, the increased reactivity of propane is more pronounced, leading to a

significant decrease in EID even with small increases in propane concentration.
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Figure 4.4  Engnne ignition delay vs. overall equivalence ratio for diesel-ignited
propane combustion; BMEPs ~ 1 bar to 12.9 bar

boost pressure mamtained at baseline D piiot value.

4.4.1.2  Percent Energy Substitution Effects on Ignition Delay

In Fig. 4.5, the ignition delay behavior of diesel-ignited propane combustion with
increasing PES is shown for four different (but constant) BMEPs from 2.5 to 10 bar.
These results are fundamentally different from the equivalence ratio effects discussed
above because the BMEP is held constant while the pilot quantity (®piot) and primary
fuel concentration are allowed to vary as PES is increased. At low BMEPs, propane
addition initially increases the ignition delay period. However, as the propane
concentration reaches a certain pomt (e.g, 50% PES at 2.5 bar BMEP), the ignition delay
begins to decrease. It should be noted here that the maximum PES possible at 2.5 bar
BMEP was about 75 percent while for higher BMEPs, the PES was restricted to about 50

percent due to high MPRR values. At higher BMEPs, while the magnitude of ignition
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delay variation is small, the ignition delay either increases (5 bar BMEP), or remains
constant (7.5 bar BMEP), or decreases (10 bar BMEP) as PES is increased. For all of
these experiments, the boost pressure was mamtained at the baseline diesel value
(corresponding to 0 percent PES), which was a constant for a given BMEP but increased
as BMEP was increased. Since the engine speed was held constant as well, higher
BMEPs led to higher exhaust temperatures and higher boost pressures. The higher
exhaust temperatures likely were a consequence of higher in-cylinder mixture
temperatures that led to shorter ignition delays. Further, the higher boost pressures at
higher BMEPs could have reduced the counteracting effects of oxygen displacement and
specific heat ratio modifications with increasing PES. The overall result was a net

decrease in ignition delays at higher BMEPs.
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Figure 4.5  Ignition delay vs. PES at BMEPs of 2.5, 5, 7.5, and 10 bar for diesel-
ignited propane combustion.

Boost pressure was maintained at 0% PES value for a given BMEP
(1.18bar, 1.28 bar, 1.40 bar, and 1.55 bar, respectively).

Figure 4.6 shows the cyclic variations in SOC for different PES at the 2.5 bar
BMEP condition shown in Fig. 4.5. In contrast to the trends observed in Fig. 4.3, the
differences in SOC behavior with increasing PES are relatively less pronounced. As PES
is increased from O percent to 25 percent, there is a slight retard in SOC and slightly
higher cyclic variations.  However, as PES is increased to 50 percent, the cyclic
variations in SOC increase substantially. Finally, at 75 percent PES, the average SOC is
advanced but the cyclic variations become more significant as the pilot quantity is
reduced, leading to more unstable engine operation (the coefficient of variation (COV) of
IMEP was 2.9 percent). At 75 percent PES, some cycles experienced more advanced
SOC, indicating more pronounced preignition chemical reactions for those cycles. Since

the boost pressure was held constant at the baseline value (1.2 bar) corresponding to O
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percent PES, increasing PES increased ®@overall,

preignition reactions in the mixture at higher PES.
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Figure 4.6
with constant boost pressure of 1.2 bar

Cyclic variations in SOC for 2.5 bar BMEP and various PES of propane

standard deviations of SOC were 0.17, 0.24, 0.26, and 0.6 CAD for 0, 25, 50, and 73

percent PES, respectively.

4.4.2  Ignition in Diesel-Ignited Methane Combustion

4.4.2.1

Equivalence Ratio Effects on Ignition Delay

Compared to propane, methane is a more stable (less reactive) primary fuel

Therefore, preignition reactions with methane may be relatively weak compared to

propane and only the effects of specific heat ratio and oxygen displacement on ignition

delay may be significant.

As shown in Fig. 4.7, for a given ®ypilot, the ignition delay

remains nearly invariant as @overanl is increased. At low BMEPs, increasing @overan leads
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to a slight increase in ignition delay but at high BMEPs, the changes in ignition delay are
relatively small. ~ With constant intake temperatures and methane as the primary fuel,
significant ignition delay trends are suppressed with increasing @overal, confirming trends
reported elsewhere [Karim et al 1989, Liu and Karim 1995]. However, with increasing
Dpilot, the ignition delay tends to decrease significantly. This is due to the fact that the
BMEP increases as @piot i increased and residual exhaust gas temperatures and n-

cylnder temperatures are higher, thus leading to shorter ignition delays.
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Figure 4.7  Ignition delay vs. overall equivalence ratio for diesel-ignited methane
combustion, BMEPs range from 1 bar to 12.9 bar

boost pressure held constant for each ®piiot value.

Figure 4.8 shows the cyclic variatons i SOC for diesel-ignited methane
combustion at different @overan With the same legend meanings as in Fig. 4.3. However,

these trends are significantly different from the diesel-ignited propane combustion trends
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shown in Fig. 4.3. For a constant @piot of 01.5, the SOC remains relatively invariant with
increasing methane concentration. This indicates that, for the equivalence ratio
experiments, the mjected diesel fuel is the primary contributing factor affecting SOC with
very little influence of methane, possibly due to its reduced reactivity compared to

propane.
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Figure 4.8  Cyclic variations in SOC for ®@pilot = 0.5 and various methane
concentrations (@overatt =0.6, 0.7, 0.8, and 0.9) with a constant boost
pressure of 1.4 bar and BMEPs ranging from 7.2 to 12.2 bar

standard deviations of SOC were 0.17,0.17, 0.2, 0.19, and 0.19 CAD for ®overa1 0f0.5,
0.6, 0.7, 0.8, and 0.9, respectively.

Again, to understand the effects of overall equivalence ratio on combustion
phasing in diesel-ignited methane combustion, engmne ignition delay trends are shown in

Fig. 4.9. With methane as the primary fuel, the EID trend varies with increasing methane
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concentration in a manner that is nearly independent of pilot quantity. These trends are
quite different from those observed i Fig. 4.4 for diesel-ignited propane combustion.
The EID increases mitially with increasing methane concentration, reaches a maximum,
and then begins to decrease as methane concentration is further increased. These trends
imply that once ignition is achieved with diesel-ignited methane combustion, the phasing
of apparent heat release is largely unaffected by the amount of pilot fuel used. A possible
hypothesis that may explain these EID trends is that the methane concentration near the
pilot spray has a more significant influence on the overall combustion rates than the pilot

quantity itself over the range of ®pilot and Doveranl investigated here.
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Figure 4.9  Engne ignition delay vs. overall equivalence ratio for diesel-ignited
methane combustion; BMEPs ~ 1 bar to 12.9 bar

boost pressure maintained at baseline Dyilot value.
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4.4.2.2  Percent Energy Substitution Effects on Ignition Delay

When methane is used as the primary fuel, its effect on ignition delay is quite
evident as PES is increased at constant BMEP and also when BMEP is increased at
constant PES (see Fig. 4.10). At lower BMEPs, the diesel quantity is very small; hence a
small amount of methane is required to drastically increase the PES. Therefore, ignition
delay is mcreased only slightly at lower BMEPs and PES, consistent with the trends
observed in Fig. 4.7. However, at increased concentrations of methane at low BMEPs,
the ignition delay tends to decrease as the engine operation becomes more unstable. At
higher BMEPs, the amount of methane required to increase the PES also increases, and
the ignition delay increase is also more significant. Oxygen displacement and chemical
effects are contributors to this ignition delay trend, with the latter likely the more
significant factor. In contrast to diesel-ignited propane combustion, the combmation of
these factors only tend to increase ignition delay when methane is used as the primary

fuel, with the exception of high PES at low BMEPs.
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Figure 4.10 Ignition delay vs. PES at BMEPs of 2.5, 5, 7.5, and 10 bar for diesel-
ignited methane combustion

Boost pressure was maintained at 0% PES value for a given BMEP (1.18bar, 1.28 bar,
1.40 bar, and 1.55 bar, respectively).

To gain additional msight regarding ID behavior at low BMEPs, the cyclic
variations in SOC for diesel-ignited methane combustion at 2.5 bar BMEP is shown in
Fig. 4.11. This condition is very similar to the 2.5 bar BMEP case shown in Fig. 4.6 for
propane, with the exception that methane allowed the acquisition of one additional set of
data for 83 percent PES. At this condition, the two primary fuels (propane and methane)
seem to behave very similarly, with methane causing less of an increase in ID at lower
PES. As with propane, the variation of SOC increases significantly with increasing PES,
especially when engine operation becomes more unstable (COV of IMEP was 5.6
percent) at 83 percent PES. At such high PES, engine istability can be caused due to

lower pilot quantities that may have led to inconsistent ignition from one engine cycle to
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another.  Again, similar to propane, this instabilty is accompanied by a decrease in

average ID.
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Figure 4.11 Cyclic variations in SOC for 2.5 bar BMEP and various PES of methane
with constant boost pressure of 1.2 bar

standard deviations of SOC were 0.17, 0.16, 0.17, 0.51, and 0.63 CAD, respectively for
0, 25, 50, 75, and 83% PES.

4.5 Conclusions

Dual fuel ignition behavior was quantified experimentally for diesel-ignited
propane and diesel-ignited methane combustion n a 1.9-liter Volkswagen TDI engine
(with the stock ECM and a wastegated turbocharger) at a constant engine speed of 1800
revvmin. Two sets of experiments were performed. First, the effects of fuel-air
equivalence ratios based on pilot fuel alone (®ypiot) and on both pilot and primary fuels

(Doveral) on ignition delay (ID) were mnvestigated. Second, the effects of percent energy
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substitution (PES) of the primary gaseous fuel and BMEP on ignition behavior were
quantified.  The following important conclusions can be drawn from the experimental
results presented in this chapter:

1. With constant but large ®piot (>0.5), increasing propane concentration (to
increase Doverall) decreased ID. If Doveran was sufficiently high (>0.7),
spontaneous autoignition (as opposed to end-gas knock) of propane
occurred before SOI of diesel pilot. Under similar conditions, increasing
methane concentration had little effect on ID.

2. A cycle-by-cycle analysis of diesel-ignited propane combustion showed
that for a constant @yilot, cyclic variations in SOC increased as Doverall Was
increased. However, SOC variations decreased when in-cylinder
conditions facilitated propane autoignition. A similar analysis of diesel-
ignited methane combustion revealed very little cyclic SOC variations as
Doverall Was increased.

3. With increasing PES of propane at constant BMEP, different ID trends
were obtained at low and high BMEPs. At low BMEPs, ID increased to a
maximum and then decreased as engine instability increased. At high
BMEPs, increasing PES of propane shortened IDs. By contrast for
methane at low BMEPs, increasing PES only increased ID slightly. At
higher BMEPs for methane, the increase in ID was more significant with
mncreasing PES.

4. At low BMEPs, increasing PES led to a significant increase in cyclic SOC
variations for both propane and methane. As cyclic SOC variations
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increased, the average SOC was also advanced, thereby shortening the 1D
values for both diesel-ignted propane and diesel-ignited methane
combustion.

The engne ignition delay (EID), the delay between the start of (pilot)
injection and the location of 50 percent cumulative heat release, was
shown to be a useful metric to understand the influence of ID on dual fuel
combustion. For propane at low ®piiot, the EID increased due to longer
IDs and slower combustion rates. As @pilot Was increased, the higher
reactivity of propane led to faster combustion rates and decreased EID
significantly even with very small propane additions. For methane, the
EID trends were nearly independent of pilot quantity. With increasing
methane concentrations, the EID first increased, reached a maximum, and
finally decreased. These trends imply that once ignition was achieved
with diesel-ignited methane combustion, the ensuing combustion process
was largely unaffected by the amount of pilot fuel used, at least for the

conditions nvestigated in this chapter.
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CHAPTER V

DUAL FUEL COMBUSTION CHARACTERIZATION

5.1 Introduction

The purpose of this chapter is to characterize the dual fuel combustion mode for
diesel-ignted methane and diesel-ignited propane. Two sets of experiments are
performed on a light-duty diesel engine and m-cylinder pressure measurements are used
to perform a heat release rate analysis. These results are exammned in conjunction with
performance and engine out emissions data. Combustion phasing and duration are
quantified and correlated with NOx, smoke, CO, and THC emissions trends. Fuel

conversion efficiencies are also correlated with combustion phasing and duration.

5.2 Objectives

The objectives of this chapter! are as follows:
1. To investigate the effect of pilot quantity, primary fuel concentration, and
in-cylinder conditions on dual fuel combustion.
2. To characterize diesel-ignited methane and diesel-ignited propane dual
fuel combustion based on in-cylinder pressure and heat release data and to
relate dual fuel combustion parameters to performance and emissions

results.

I The essence of this chapter has been accepted for publication in the Proc. Inst. Mech. Engrs., Part D:
Journal of Automobile Engineering [Polk 2013].
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5.3 Experimental Procedure

In order to understand the essential combustion characteristics of diesel-ignited
methane and diesel-ignited propane combustion, two different sets of experiments were
performed. All experiments were performed at a constant engine speed of 1800 rpm.
The first set of experiments employed constant pilot quantities and varying
concentrations of primary fuel, and therefore the overall equivalence ratio (®overal) Was
allowed to vary, similar to the trends discussed in [Karim 2003]. In these experiments,
since the load was also allowed to vary freely, the performance and emissions results
quantify the effects of varying the primary fuel equivalence ratio (at constant pilot
quantity) on dual fuel combustion behavior. Since load varies while engine speed is held
constant, the in-cylinder pressures and temperatures vary widely in a single set of data.
To analyze the effects of varying concentrations of primary fuel under similar in-cylinder
conditions, the engne load (brake mean effective pressure or BMEP) must be held
constant. In the second set of experiments, the BMEP was maintaned at a specified
value while the piot and primary fuels were adjusted based on predetermined PES
mcrements within £1.5 percentage points. Experimental matrices for these two sets of
experiments are shown in Tables 5.1 and 5.2 below. The maximum PES stated in Table
5.2 was dependent on the primary fuel type and the BMEP. If the maximum is not
specifically listed for a given condition, then the last stated PES is the maximum value

possible for that fuel at that condition.
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Table 5.1  Experimental Matrix for Overall Equivalence Ratio Effects at Different
Pilot Quantities

Constant Pilot Quantity

PﬂOt (Doverall
kghr) 02 03 04 05 06 0.7 0.8 0.9
1.52 D MP MP M

2.41 D M,P MP M

3.49 D MP MP MP

4.80 D MP MP MP M
6.30 D M,P  M,P

D: diesel-only operation, M: methane dual fueling, P: propane dual fueling

Table 5.2  Experimental Matrix for PES Effects at Different BMEPs

Constant BMEP

BMEP Percent Energy Substitution
(bar)  25% 50% 75%  Max
25 MpP MP MP MP

50 MP M P=47%
75 MP MP
100 MP M P=45%

M: methane dual fueling, P: propane dual fueling

Each set of experiments was performed in the same session to reduce variations in
baseline operation and obtain reliable performance and emissions data. In addition, the
intake boost pressure was held constant for a given pilot quantity or for a given BMEP.
The mtake pressure chosen for each condition was based on the nominal boost pressure
possible (corresponding to the available exhaust energy) at the baseline diesel operating
condition (no gaseous fuel). Engne coolant temperatures and intake charge temperatures

were maintained at 85+£5°C and 35+5°C, respectively for all experiments.
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5.4 Results and Discussion

In this section, the combustion, performance, and emissions results for diesel-
ignited methane and diesel-ignited propane dual fuel combustion are presented. While
mterpreting these results, it must be noted that the operating conditions were limited by
several factors. At low BMEPs, engine misfire limited the maximum possible primary
fuel substitution. At high BMEPs, higher primary fuel concentrations were limited by a
self-imposed pressure rise rate limitation of 15 bar/deg. At these conditions, the engine
was rapidly approaching knocking conditions, causing considerable audible noise. The
maximum possible primary fuel concentrations also varied between the two primary fuels

(methane and propane) as well as with pilot quantity.

5.4.1 Constant Pilot Experiments

In this set of experiments, the pilot quantity was held constant while the primary
fuel concentration was increased, allowing the overall equivalence ratio and the BMEP to
vary. The overall equivalence ratios (@overan) ranged from 0.2 to 0.9. For each sweep of
primary fuel concentration, a different (but constant) pilot quantity was used. The pilot
quantities investigated in these experiments included 1.52 kghr, 2.41 kg/hr, 3.49 kg/hr,
4.80 kg/r, and 6.30 kg/hr, and they correspond to diesel-only equivalence ratios of 0.2,

0.3, 0.4, 0.5, and 0.6, respectively.

54.1.1 Heat Release Rate Behavior

Heat release profiles for a combustion process reveal important details about how
combustion is progressing, how it is phased, and the duration of combustion. Figure 5.1

shows, for example, the heat release profiles for both diesel-ignited propane and diesel-
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ignited methane combustion at the smallest pilot quantity (m = 1.52 kg/hr). In addition to
the heat release profiles, the measured needle lift profiles for all plots are also shown as
msets in Fig. 5.1 to demonstrate the consistency in diesel mjection (in both phasing and
duration). For the diesel-only condition, the initial peak is primarily associated with
premixed combustion and the second peak is predominantly due to mixing-controlled
combustion [Dec 1997, Heywood 1988]. As the concentrations of both propane and
methane are increased, the initial peak of the AHRR curve is increased, indicating that
the amount of gaseous fuel (and its participation in the initial combustion phase)
entrained in the pilot spray and immediately surrounding it is increased. The two gaseous
fuels behave similarly during this part of combustion. As combustion progresses to the
mixing-controlled stage, however, the trends begin to differ between diesel-ignited
propane and diesel-ignited methane combustion. As the concentration becomes high
enough (e.g., Doveral = 0.4), the second stage of heat release, likely associated with flame
propagation, increases in magnitude more sharply for propane dual fueling than for
methane dual fueling. In this regard, Egolfopoulos et al. [2007] show that the lean
flammability limit of the gaseous fuel-air mixture under conditions similar to those seen
at SOI (unburned mixture temperature and pressure of ~700K and ~50 bar, respectively)
are approximately @gasecous = 0.18 for methane and ®gasecous = 0.16 for propane, affirming
the possiility of flame propagation under all of these conditions. The dissimilar AHRR
trends may be the result of different laminar burning velocities (LBV) of the propane-air
and methane-air mixtures, which will affect the turbulent burning rates in different ways.
The LBV of a mixture is dependent on a number of variables, including adiabatic flame

temperature (AFT), molecular structure, and equivalence ratio, among others [Law 2010,
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Stone 1999]. In this case, the equivalence ratios are very similar, however the AFT of
propane is known to be higher than that of methane and the LBV has been shown to scale
with AFT [Heywood 1988, Law 2010]. In addition, Law [2010] shows LBV is also
affected by molecular structure, increasing with chemical reactivity even when AFT is
kept constant. In summary, propane has a higher LBV, and consequently, the turbulent
flame propagation rates are likely higher with diesel-ignited propane combustion
compared to diesel-ignted methane combustion. Shown m Fig. 5.2, this expected
behavior is confirmed by a shorter combustion duration (defined here as CA10-90)
observed for diesel-ignited propane combustion relative to diesel-methane combustion at
high gaseous fuel concentrations. These observations help explain the second peak

trends in AHRR and are also consistent with the fact that propane is a more reactive fuel

than methane.
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Figure 5.1  Heat release and needle lift profiles for (a) diesel-ignited methane and (b)
diesel-ignited propane combustion at a fixed pilot quantity of 1.52 kg/hr

the diesel-only condition represents an equivalence ratio of 0.2.
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Figure 5.2 CA10-90 for diesel-ignited methane (solid) and diesel-ignited propane
(dashed) combustion versus overall equivalence ratio at various fixed pilot
quantities.

Increasing the pilot quantity yields significantly different results, as shown i Fig.
53 (m = 4.80 kghr). At this condition, the effects of the gaseous fuel-air mixture on
AHRR are far more significant than at the low pilot condition for both fuels. However,
these effects differ greatly between diesel-ignited propane and diesel-ignited methane
combustion. In diesel-ignited propane combustion, the second stage of heat release
quickly dominates combustion as propane concentration is increased. Since BMEP is not
held constant in these experiments, as propane concentration is increased, in-cylinder
pressures and average in-cylinder temperatures also increase. Cylinder wall and residual
gas temperatures rise accordingly, and m turn affect the preignition chemistry of the
propane-air mixture, contributing to shorter ignition delay periods. Table 5.3 shows the
ignition delay values for baseline diesel, diesel-ignited methane combustion, and diesel-
ignited propane combustion at the tested constant-pilot quantities. Polk er al [2011]
discuss these ignition delay trends for propane and methane dual fuel combustion in

greater detail. Figure 5.4 shows the differences in the early stages of heat release for
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increasing propane concentration and increasing methane concentration while employing
a large constant-pilot quantity. At relatively higher equivalence ratios, the fact that
propane autoignites even before diesel mjection (and ignition) begins is clearly evident
from the positive AHRR values that precede the injector needle opening for @overann = 0.8
as shown in Fig 5.4(b). At the highest propane concentration (Qoveran = 0.8), combustion
of the propane-air mixture occurs nearly simultaneously with combustion of the diesel
jet, causing an extremely high peak in heat release rate (see Fig. 5.3(b)). In diesel-ignited
methane combustion, with the exception of the highest concentration (Qoverat = 0.9), the
AHRR profile remains similar to that of straight diesel combustion except with an
increasing amount of heat release occurring due to flame propagation. This delays the
CAS50 since an increasing percentage of heat release occurs later in the combustion
process. At the highest methane concentration (and coincidentally the highest overall
equivalence ratio of all conditions tested), the heat release profile is changed greatly. At
this condition, it is possible that the methane-air mixture is approaching conditions
conducive for end-gas knock, leading to the rapid increase in apparent heat release rate as

well as the advancement i CASO0.
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the diesel-only condition represents an equivalence ratio of 0.5.
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The CAS50 trends for both diesel-ignited methane and diesel-ignited propane
combustion are shown m Figure 5.5. Initially, CA50 tends to retard as overall
equivalence ratio is increased. In diesel-only combustion (shown as open circles), this
trend is practically linear. For more diesel fuel to be added, the njection event must have
a longer duration, causing fuel to enter the combustion chamber even after the start of
combustion, thus delaying the overall combustion phasing (CAS50). With dual fuel
combustion, however, the CAS50 trend indicates a maximum phasing retard for a given
pilot quantity and then begins to advance as overall equivalence ratio is further increased.
Since all of the air-fuel mixture is present at the start of combustion, there is no additional
delay as a result of late njection. However, CA50 does retard at low overall equivalence
ratios as gaseous fuel concentration is increased. This may be explained from the fact
that more of the combustion energy release arises from flame propagation as evident
from the higher second peaks m AHRR as gaseous fuel concentration is increased at low
overall equivalence ratios.  The subsequent advancement of CAS5S0 with increasing
gaseous fuel concentration is due to a shit fiom a ‘“conventional two-peak” AHRR
profile to a “single early peak” AHRR profile, and therefore, a departure from the
classical mterpretation of dual fuel combustion [Karim 2003]. This effect is much more
pronounced with diesel-ignited propane combustion relative to diesel-ignited methane
combustion, likely due to differences in preignition chemistry and LBV as discussed

previously.
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Figure 5.5  CAS5O for diesel-ignited methane (solid) and diesel-ignited propane
(dashed) combustion versus overall equivalence ratio at various fixed pilot
quantities.

5.4.1.2 Emissions and Performance

The NOx and smoke emissions for all tested constant pilot conditions are shown
mn Fig. 5.6. For almost all conditions, it is observed that as gaseous fuel concentration is
increased, brake-specific NOx (BSNOx) emissions decreased or remained constant. This
trend is primarily driven by the increasing power of the engne at high BMEP conditions.
Oxides of nitrogen have been shown to scale with pilot quantity for dual fuel combustion
[Karim 1987, Abd Alla 2000]. Therefore, it would be expected that for a given overall
equivalence ratio, BSNOx would decrease with decreasing pilot quantity. However,
though the volumetric NOx concentration in parts per million (ppm) does decrease for
smaller pilot quantities at similar overall equivalence ratios, for each given overall
equivalence ratio BSNOx appears to be relatively isensitive to pilot quantity. Compared
to methane, propane tends to have slightly higher BSNOx, especially at higher gaseous
fuel concentrations and larger pilot quantities. This can be attributed to a more advanced

combustion phasing, mndicated by CAS5S0 shown n Fig. 5.4. Smoke increases with
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increasing primary fuel concentration at constant pilot quantity. This behavior can be
explaned by nvoking Dec's conceptual model of diesel combustion [Dec 1997], which
states that soot is primarily formed mn the head vortex region and the rich premixed
regions of diesel sprays. A possible explanation is that as the primary fuel concentration
is increased for a given constant pilot quantity, more fuel is entraned in and around the
pilot spray, increasing the size of the head vortex region and enriching the fuel-air
mixture therein, and therefore increasing smoke emissions. However, if the pilot spray is
very small, as with the smallest pilot quantity shown in Fig. 5.6(b), then the diesel pilot
only acts to intiate flame propagation of the lean fuel-air mixture, preventing an increase
of smoke emissions. An apparent inconsistency in the smoke trends can be seen at the
6.30 kg/hr pilot quantity. Instead of following the increasing trend with pilot quantity,
the smoke for this condition is less than that of the 4.80 kg/hr pilot quantity. This can be
explained by the linear trend of the baseline diesel condition and the rapid increase in
smoke emissions with overall equivalence ratio. As evident in Fig. 5.6(b), the maximum
possible equivalence ratio with the 6.30 kg/hr pilot quantity was lower than the
corresponding maximum for the 4.80 kg/hr pilot quantity. Given a high enough overall
equivalence ratio, the 6.30 kg/hr condition would likely surpass the 4.80 kg/hr condition

in smoke emissions.
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equivalence ratio at various fixed pilot quantities.

In addition to NOx and smoke emissions, CO and THC emissions are also of
concern when examining dual fuel combustion. High CO emissions are typically
associated with incomplete bulk oxidation of fuel (smce CO is an mntermediate major
species of combustion) and increased THC may be attributed to incomplete flame
propagation, ie., the flame initiated by the ignited pilot spray cannot spread far enough or
fast enough to burn all of the gaseous fuel-air mixture despite the presence of excess
oxygen [Karim 1991]. Also, increased THC may be attributed to the fuel-arr mixture
trapped in crevices around the combustion chamber that may be left unburned at the end
of the combustion process. When the equivalence ratio associated with the gaseous fuel
is below a certain flame spread limit (FSL), CO and THC emissions are increased and

these effects are accompanied by an increase in specific energy consumption. Badr et al.
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[1999] showed that the FSL decreases as the pilot quantity increases; therefore, for a
given concentration of primary fuel, CO and THC emissions should decrease as pilot
quantity increases. This behavior is observed in Fig. 5.7, with the exception of CO
emissions for diesel-ignited methane combustion at very high overall equivalence ratios.
The increase in CO for diesel-ignited methane combustion at 4.80 and 6.30 kg/hr pilot
quantities may be attrbuted to the majority of combustion happening later in the
combustion process, where the global temperatures are lower and may be msufficient for

CO to fully oxidize before the expansion process is complete.
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Figure 5.7  (a) Brake-specific HC emissions and (b) brake-specific CO emissions for
diesel-ignited methane (solid) and diesel-ignited propane (dashed)
combustion versus overall equivalence ratio at various fixed pilot
quantities.

Comparing the CO and THC emissions of diesel-ignited methane and diesel-
ignited propane combustion, it can be seen for all pilot quantities that, m general,
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methane produces more THC emissions and propane produces more CO emissions. This
trend is explained in depth by Shoemaker et al [2012], where it is shown that a
competition exists between CO and THC in terms of which species gets oxidized
preferentially. With diesel-ignited methane combustion, CO oxidation is preferred due to
slower burn rates, leaving excess THC emissions, while with diesel-ignited propane
combustion, HC consumption is preferred due to faster flame propagation, leaving more
CO emissions. In other words, under similar conditions, more propane will undergo
partial oxidation than methane. In addition, the advanced combustion phasing of diesel-
ignited propane combustion allows for higher temperatures during the combustion
process, leaving more opportunity for partial oxidation to occur.

Figure 5.8 shows that the fuel conversion efficiency (FCE) increases as the pilot
quantity and the overall equivalence ratio are increased. As pilot quantity is increased,
boost pressure is also increased (as dictated by the diesel baseline operating conditions),
allowing an increased overall fueling rate for a given equivalence ratio. Similarly, an
increase in overall equivalence ratio corresponds to an increase in the overall fueling rate,
leading to an increase in CA10-90. A higher CA10-90 at a sufficiently advanced CA50
leads to more energy tranfer to the pistons for a given amount of fuel, increasing the FCE.
When comparing diesel-ignited methane and diesel-ignited propane combustion, it is
clear that at all concentrations the latter yields higher FCEs than the former. This can
likely be attributed to the advanced phasing of CA50 due to the higher LBV and turbulent

burn rates associated with propane.
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diesel-ignited propane (dashed) combustion versus overall equivalence
ratio at various fixed pilot quantities.

5.4.2 Constant BMEP Experiments

In this set of experiments, the load (BMEP) was held constant as the pilot quantity
and primary fuel concentration were varied to observe the effects of varying primary fuel
concentration under similar in-cylinder conditions (wall temperature, residual gas
temperature and concentrations, etc.). The engine load was held to four constant BMEP
values of 2.5, 5, 7.5, and 10 bar. The overall percent energy substitution (PES) of the
gaseous fuels ranged from 0-83 percent, but was generally limited to approximately 50
percent due to misfire at low loads and knock (autoignition) at high loads. Intake boost
pressures, which varied across BMEPs (but remained constant for a given BMEP), were

determined based on diesel-only conditions.
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It must also be noted that the mass flow of gaseous fuel required to achieve a
certain level of PES changes for different BMEPs. For example, very little gaseous fuel
is required to alter the PES a great amount at low BMEPs and a significant quantity is

required at high BMEPs to reach the same level of PES. Therefore, the fueling rates

corresponding to a given PES are not the same at different BMEPs.

5.4.2.1 Heat Release Rate Behavior

The apparent heat release rate profiles for both diesel-ignited propane and diesel-
ignited methane combustion for 2.5 bar BMEP are shown n Fig. 5.9. In addition, the
needle lift profiles are also shown i the mset plots to indicate the consistency achieved
in pilot injection timing and the variations observed in pilot injection duration as PES is
varied. It is clear from the AHRR profiles of diesel-ignited methane combustion at 2.5
bar BMEP that the character of combustion changes significantly from straight diesel
combustion to high-PES dual fuel combustion. The initial heat release rate peak is
decreased as the pilot quantity is decreased and the magnitude of energy release in the
second heat release phase is gradually increased. This results in the retardation of CAS0

and increases CA10-90, as shown in Figs. 5.10 and 5.11, respectively.
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Figure 5.9  Heat release and needle lift profiles for (a) diesel-ignited methane and (b)
diesel-ignited propane combustion at a fixed BMEP of 2.5 bar
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Figure 5.10 CAS5O for diesel-ignited methane (solid) and diesel-ignited propane
(dashed) combustion versus PES at various fixed BMEPs.
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The effects of increased PES on both diesel-ignited methane and diesel-ignited
propane combustion are clearly evident, though somewhat different. =~ When the pilot
quantity is decreased with increasing PES, the initial heat release peak actually increases
slightly before decreasing for diesel-ignited propane combustion. As propane
concentration is increased, changes in the effective specific heat of the in-cylinder
mixture and the displacement of oxygen (due to the presence of propane in the intake)
increase the ignition delay period, as shown in Fig. 5.12. These effects are more
pronounced with propane at this condition than they are with methane. This allows for
the formation of a larger diesel jet and a larger quantity of propane-ar mixture to be
entrained within the diesel jet before ignition, resulting n a higher initial heat release rate
peak for diesel-ignited propane combustion compared to straight diesel fuelng up to a
PES of 50 percent. A further increase in PES leads to a decrease in the mitial heat release
rate peak and a shift to higher heat release in the second heat release phase associated

with flame propagation.
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Figure 5.12 Ignition Delay for diesel-ignited methane (solid) and diesel-ignited propane
(dashed) combustion versus PES at various fixed BMEPs.

At a BMEP of 10 bar, the change in combustion characteristics with increasing
PES is much more pronounced for diesel-ignited propane than for diesel-ignited methane
combustion. As shown i Fig. 5.13, the large pilot quantities used for this condition
dominate the AHRR profile for diesel-ignited methane combustion. At this condition, the
high fueling rates of methane necessary to increase the PES cause an increase m ignition
delay (likely due to oxygen displacement and chemical effects) [Lu and Karim 1995].
This behavior is similar to that of diesel-ignited propane combustion at low BMEPs. The
mitial peak is therefore increased as an increasing concentration of methane is entrained
n the pilot spray over an extended ignition delay period but the ensuing combustion
process is very similar for 0, 25, and 50 percent PES, indicating that the phasing of diesel
and diesel-ignited methane combustion are very similar at this BMEP. However, for
diesel-ignited propane combustion, as the PES is varied from 0 to 50 percent the AHRR
curve transforms from a typical two-peak profile to a single peak profile. At this BMEP,

the ignition of the propane-air mixture occurs very rapidly, with an ignition delay of 1.3
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CAD, the lowest of all cases exammned in this set of experiments. The preignition
chemistry is dictated by the accumulation of radicals [Law 2010], which appears to occur
more rapidly with diesel-ignited propane combustion than with diesel-ignited methane
combustion. High in-cylinder pressures and temperatures initiate radical accumulation in
the propane-air mixture and, combined with the increased reactivity of propane, shorten
the ignition delay period. This behavior is a reversal of the ignition delay behavior of
propane at low BMEP, indicating there are competing effects determining the duration of
ignition delay. Upon diesel injection, the combustion of the propane-air mixture is very
rapid, occurring nearly simultaneously with the combustion of the diesel pilot, quantified
by the advanced CAS50 and shorter CA10-90 shown in Figs. 5.10 and 5.11, respectively.
The rapidity of the combustion can be attributed to propane’s relatively high LBV, which
enhances the turbulent combustion rates. As a direct consequence of the rapidity of
propane combustion, the peak heat release rate is increased substantially for the
maximum propane PES compared to 25 percent PES. This behavior indicates that
volumetric autoignition of propane may likely outweigh any localized flame propagation
under these conditions, implying a divergence from the typical three-phase interpretation

of dual fuel combustion, as indicated in the constant pilot quantity experiments.
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Figure 5.13 Heat release and needle lift profiles for (a) diesel-ignited methane and (b)
diesel-ignited propane combustion at a fixed BMEP of 10 bar

PES ranges from 0-50%

5.4.2.2 Emissions and Performance

The emissions trends for BSNOx and smoke versus PES are shown in Fig. 5.14.
At low BMEPs, BSNOx decreases simultancously with smoke emissions as PES is
increased. This is consistent with the concept that NOx scales directly with pilot quantity
n dual fuel engines because larger pilot sprays lead to larger regions with high local
temperatures that foster NOx formation. However, at higher BMEPs, this trend is
reversed for many instances of diesel-ignited propane combustion. Brake-specific NOx
emissions are increased significantly by the advanced CAS50 phasing and rapid
combustion of the propane-air mixture in these cases. These conditions are associated
with very high local m-cylinder temperatures and pressures, which facilitate NOx
formation. In addition, the maximum PES possible at high BMEPs was lower; therefore,

the contribution to NOx formation from the relatively larger diffusion flame area around
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the pilot spray was likely higher. For both fuels at all BMEP conditions, smoke
emissions decrease with increasing PES. As PES is increased, the pilot size is reduced
and a greater fraction of the AHRR arises from the lean premixed gaseous fuel-air
mixture instead of the pilot spray. As a result, there are fewer fuel-rich areas for
particulate matter to be created, and therefore smoke emissions are reduced. In
comparing the two fuels, diesel-ignited propane combustion tends to produce less smoke
than diesel-ignited methane combustion. This is most noticeable at the highest BMEPs,
where the combustion behaviors of the two fuels are significantly different. The present
author hypothesizes that, at these conditions, diesel-ignited propane combustion produces
less smoke than diesel-ignited methane combustion because the higher pressures and
global temperatures caused by rapid combustion of the lean propane-air mixture allow

any soot produced in the diesel head vortex region to be oxidized to a greater extent.
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Figure 5.14 (a) Brake-specific NOx and (b) smoke emissions for diesel-ignited methane
(solid) and diesel-ignited propane (dashed) combustion versus PES at
various fixed BMEPs
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Figure 5.15 shows the CO and THC emissions trends versus PES at constant
BMEP for diesel-ignited methane and diesel-ignited propane combustion. At low
BMEPs, CO and THC emissions increase steeply with increasing PES, as is typical of
dual fuel combustion. This is attributed to low bulk gas temperatures and incomplete
oxidation (partially burned fuel, resulting in intermediate stable species such as CO), as
well as incomplete flame propagation (unburned fuel). As BMEP is increased, the in-
cylinder temperatures are mncreased and CO and THC emissions are dramatically
reduced. As seen in the constant pilot quantity experiments, when comparing the
emissions of the two fuels, diesel-ignted methane combustion yields a higher
concentration of THC and diesel-ignited propane combustion yields a higher
concentration of CO. During combustion, these emissions species must compete for
oxidation, as discussed i [Shoemaker 2012], and the differences in primary fuel
chemistry regulate the outcome. Propane, being a more reactive fuel, begins to undergo
partial oxidation more quickly than methane. Therefore, under similar conditions diesel-
ignited propane combustion will yield lower unburned THC emissions and more CO
emissions compared to diesel-ignited methane combustion. This is consistent with the
AHRR curves which show that the initial heat release is much larger with diesel-ignited
propane combustion, allowing more fuel to be wholly or partially burnt quickly after the
start of combustion, while in-cylinder pressures and temperatures are still relatively high.
Moreover, at high BMEPs and high PES, diesel-ignited propane combustion (with early,
single-peak AHRR profiles) proves to be an exception to classical dual fuel combustion
(with two-peak AHRR profiles), yielding both lower THC and CO emissions than diesel-
ignited methane combustion, likely as a result of its early, rapid heat release.

83

www.manaraa.com



60 — 60 — .

™
(=
™
(=

BSHC (g/kW-hr)
BSCO (g/kW-hr)

20— 20 —

[
0 a0 40 L=i] [ vl 0 a0 40 L=l

i i
Porcent Energy Substitution (%) Porcent Energy Substitution (%)

Figure 5.15 (a) Brake-specific HC and (b) brake-specific CO emissions for diesel-
ignited methane (solid) and diesel-ignited propane (dashed) combustion
versus PES at various fixed BMEPs

Fuel conversion efficiency (FCE) trends for increasing PES at constant BMEPs
(but different values) are shown in Fig. 5.16. At BMEP = 2.5 bar (baseline diesel FCE of
27.1 percent), the FCE decreases as PES is increased. At these conditions, the
combustion is phased later in the expansion stroke and occurs at a slower rate, as
indicated by the retarded CAS50 and increased CA10-90. In addition, low bulk gas
temperatures at these conditions lead to increased CO and THC emissions, which are in
turn expelled in the exhaust as unconverted fuel, reducing FCE to 16.4 percent at 83
percent PES of methane and 20.8 percent FCE at 73 percent PES of propane. At BMEP
= 10 bar (baselne diesel FCE of 38 percent), CAS0 is relatively nvariant with increasing
PES for diesel-ignited methane combustion and advanced for diesel-ignited propane
combustion and CA10-90 decreased with increasing PES mn both cases. This leads to

higher m-cylinder pressures earlier in the expansion stroke. In addition, higher bulk gas
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temperatures reduce CO and THC emissions. For diesel-ignited methane combustion at
high BMEPs, FCE decreases slightly to 37.1 percent as PES is increased to 51 percent.
For diesel-ignited propane combustion at high BMEPs, FCE is shown to increase to 39
percent as PES is increased to 46 percent. Compared to diesel-ignited methane
combustion, diesel-ignited propane combustion is observed to have better FCEs over the
range of conditions exammed in this chapter. This may be attributed to propane's

increased reactivity, advanced combustion phasing (CAS50), and faster combustion rates

relative to methane.
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Figure 5.16  Fuel conversion efficiency (FCE) for diesel-ignited methane (solid) and
diesel-ignited propane (dashed) combustion versus PES at various fixed
BMEPs

5.5 Conclusions
Dual fuel combustion was characterized experimentally with two sets of

experiments each for diesel-ignited propane and diesel-ignited methane operation in a
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1.9-liter Volkswagen TDI engine (with the stock ECM and a wastegated turbocharger) at
a constant speed of 1800 rpm. The first set of experiments utilized several fixed diesel
pilot quantities and varied propane and methane concentrations (and consequently overall
fuel-air equivalence ratios and BMEPs). The second set of experiments was performed
with fixed BMEPs and varying percent energy substitution (PES) of the gaseous fuels.
Analysis of the results obtained led to the following important conclusions:

1. With a small fixed pilot quantity (m,; = 1.52 kg/hr) and varying overall
equivalence ratios, diesel-ignited propane and diesel-ignited methane
combustion behave similarly, although the former exhibits slightly faster
combustion, likely due to propane’s higher laminar burning velocity
(LBV). With a larger fixed pilot quantity (m, = 4.80 kg/hr), propane or
methane addition causes significant (but different) changes to the
combustion process. As propane concentration is increased, CAS50 is
significantly advanced and the peak AHRR increased, again likely due to
propane’s relatively high reactivity (rapid radical accumulation) and
higher LBV compared to methane. =~ As methane concentration is
ncreased, the AHRR increased primarily during the Ilatter part of
combustion (flame propagation), resulting in a retarded or constant CAS0.
At the highest methane concentration (®@overat = 0.9), CAS50 is advanced
and the peak AHRR is greatly increased, possibly indicating that dual fuel
combustion is approaching conditions conducive for knock.

2. For almost all fixed pilot conditions, as gaseous fuel concentration is

increased, brake-specific NOx emissions decrease or remain constant,
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while smoke emissions increase. The CO and THC emissions increase
with increasing primary fuel concentration at low loads, and decrease as
pilot quantity increased. Overall, diesel-ignited propane combustion
yields higher CO emissions, lower THC emissions, and slightly higher
fuel conversion efficiencies (FCE) than diesel-ignited methane
combustion. This is attributed to propane’s higher reactivity and LBV,
and therefore, more advanced combustion phasing and higher global
temperatures.

. As PES is increased at a constant low BMEP condition, the first peak of
the apparent heat release rate (AHRR) generally decreases while the
second AHRR peak associated with flame propagation increases. With a
high fixed BMEP, the behavior of the two fuels varies significantly.
Diesel-ignted methane combustion shows a significant increase in
ignition delay and fairly consistent AHRR profiles for different PES. The
increase in ignition delay is attributed to oxygen displacement and
chemical effects present with the high methane fueling rates needed to
achieve the given PES at high BMEPs. For diesel-ignited propane
combustion, the ignition delay decreases leading to very rapid combustion
at high PES, thereby transforming the combustion from the two-peak
profile typical of dual fuel combustion to a single early AHRR peak of
substantially higher magnitude. The large amount of propane needed to
achieve the given PES at high load allows the propane-air mixture to be
rich enough to approach auto-ignition conditions.
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4. Both the high-BMEP/high PES and large-pilot/high equivalence ratio
behaviors of diesel-ignited propane combustion indicate a departure from
the classical three-phase mterpretation of dual fuel combustion. Rather, it
appears that distributed auto-ignition may outweigh localized flame
propagation under these specific conditions, in which combustion
resembles a “diesel-regulated HCCI-like” process.

5. For low fixed BMEP conditions, the NOx emissions decrease
simultaneously with smoke emissions as PES is increased (and the pilot
quantity is reduced). The NOx emissions decrease because there are likely
fewer locally high temperature regions, and smoke emissions decrease
because there are fewer locally fuel-rich regions. At high BMEP
conditions, this trend is reversed for diesel-ignited propane combustion,
where rapid, advanced combustion cause high global and likely high local
temperatures, which facilitate NOx formation. The CO and THC
emissions increase with increasing PES, most noticeably at low BMEPs.
Fuel conversion efficiency decreases at low BMEPs with increasing PES,
but is mamntained at baselne diesel values or even increases at high
BMEPs. In general, diesel-ignited propane combustion yields higher CO,
lower THC, and higher FCE than diesel-ignited methane combustion over
the range of PES exammed (at constant BMEP).

6. The phasing and the duration of dual fuel combustion were affected by
pilot quantity, in-cylinder conditions, and primary fuel concentration. It is

mferred that pilot quantity affects in-cylinder conditions by mnfluencing
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the residual gas temperatures and cylinder wall temperatures. In turn, this
affects the phasing and duration of combustion, most noticeably with
diesel-ignited propane combustion. Earlier phasng of diesel-ignited
propane combustion leads to higher FCEs, shorter combustion durations
(faster burn rates), and lower THC emissions. Increasing primary fuel
concentration has different effects at different BMEPs, but always
decreases smoke while at a given constant BMEP. At high BMEPs,
increased propane concentration leads to a significant change in dual fuel
combustion character, exhibiting an advanced, rapid heat release. This
behavior leads to higher FCEs compared to the baseline diesel values and
lower smoke emissions. Further investigation of diesel-ignited propane
combustion is needed to fully understand the potential of this significantly

different duval fuel combustion behavior.
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CHAPTER VI

EXPERIMENTAL SETUP —MX10 ENGINE

6.1 TestCell Setup

The second set of experiments in the present work was performed on a MX10

heavy duty diesel engine. To run the experiments, an appropriate test cell had to be

designed and mmplemented. Relevant engine details are given in Table 6.1. An overview

of the heavy duty test cell is shown in Figure 6.1.

Table 6.1  MXI10 Engine Specifications
Parameter Value
Engine MX10
Cylinders 6, inline
Bore 130 mm
Stroke 162 mm
Connecting rod length 262 mm
Valves per cylinder 4
Nominal compression ratio 17:1
Displaced volume 12.9 liters

Injection system

Aspiration
EGR

Engine Control

Solenoid direct injection w/
electronic unit pumps (EUPs)

Turbocharged w/ variable nozzle
turbocharger (VNT)

Cooled

Original equipment engine control
module (OE ECM) or Drivven
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R

LEGEND 10: Laminar Flow Element
1: MX Engine 11: Intercooler

2: Eddy Current Dynamometer 12: Coolant Heat Exchanger
3: Driveshaft / Cover 13: Diesel Measurement

4 5: Turbocharger 14: Diesel Storage

&: Six gas emissions bench 15: Propane Measurement
7: Smoke Meter 16: Propane Supply

g: FTIR 17: Harness Adapter Board
9: EEPS 18: Drivven / DAQ Cabinet

Figure 6.1  MXI10 test cell overview

The foundation of the heavy duty test cell is a 6 foot wide by 18 foot long Bay
Cast Technologies bed plate. The first piece of equipment mounted to the bedplate was
the eddy current dynamometer, a Froude Hofmann AG500 (500 kW), which was
positioned at the correct height using a dynamometer riser manufactured by Application
Engneering, Inc. As an eddy current dynamometer, or “dyno,” dissipates the energy it
absorbs as heat, it must be cooled. Facility process water was plumbed to the

dynamometer for this purpose; a schematic is shown i Appendix B.  Appropriate
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electrical and thermocouple connections were made and the dynamometer was later
commissioned once there was a load source (MX10 engine) coupled to it.

The engme was hoisted with a gantry crane and mounted on Bay Cast
Technologies “elephant feet” style mounts. As the mounts were generic and not specific
to the engmne, adapters were required to complete its mounting. A thick piece of “L
Angle” A36 structural steel was used to span the front two “elephant feet” mounts and
secure the front engme mount. One inch thick neoprene rubber of 70A durometer
hardness was used between the structural steel crossbar and the “elephant feet” mounts
for vibration isolation.  Another Bay Cast Technologies product, the moon universal
joint, which resembles a ball and socket joint, was used to couple each of the rear engine
mounts to the rear elephant feet. As with the front engine mounts, the same thick rubber
was used for vibration isolation. A rear engine mount can be seen behind the driveshaft

in Figure 6.2.
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Driveshaft
adapter B

“Elephant foot”
mount

Figure 6.2  MXI10 driveshaft, flywheel adapter, and rear engine mount

The engine was coupled to the dynamometer using a driveshaft specified with the
help of Jont Clutch and Gear, Inc. (JCGI). This required the use of a custom flywheel
adapter for two reasons: (1) to adapt the different fastener hole patterns and (2) to add
approximately 1 kg-m2 of rotational mertia to the engme (required by the specified
driveshaft). The adapter was designed and machmned from one inch thick steel. The
driveshaft and adapter are shown in Figure 6.2 and an engneering drawing for the
adapter is provided in Appendix B. After mounting the adapter and driveshaft, a robust
driveshaft guard was fabricated for safety.

A prelimmnary fuel system was specified to supply, but not measure, filtered diesel

flow to the engme. The 55 gallon fuel tank was designed and submitted to the Anel
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Corporation for manufacturing.  An AirDog Class 8 Fuel Preparator pump/filter
combination unit was used to supply fuel to the engine. In addition to filtering solid
particles, the filter also removes any water or gaseous bubbles from the fuel supply.

The thermal management systems used included a large shell and tube heat
exchanger for engine coolant conditioning, a water-to-air intercooler for intake air
temperature control, and a small shell and tube heat exchanger for fuel temperature
control.  Engine coolant and fuel temperatures were controlled using Automation Direct
PID controllers coupled with Johnson controls three-way mixing valves. Intake air
temperature was maintained at a set value with a PID controlled two-way globe valve.
Engine coolant was supplied to the then engmne at 65+5 degrees Celsius while coolant
temperature out of the engine was maintained at 85+5 degrees Celsius. Post-mtercooler
air temperatures were maintained at 25+5 degrees Celsius. Schematics of the coolant and

mtake air temperature control systems are shown i Figures 6.3 and 6.4, respectively.
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Figure 6.4

Intake air temperature control schematic
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The engine wiring harness was wired such that an adapter board (specially
designed by Drivven for this engne) could be used, allowing either the original
equipment (OE) engine control module (ECM) or Drivven controller to control the
engine, depending on which input was connected. Shown in Figure 6.5, the adapter
board had three banks of connectors. The top row of connectors was the output, which
led to the engne wiring harness and therefore the various sensors, control, and
communication modules on the engine. The middle and bottom rows of connectors were
identical, receiving mput from either the OE ECM or the Drivven controller. These
mputs were never connected simultaneously (prevented interference from pull-up
resistors in sensors, power sources, etc.); however, the extra set of plugs provided easy

access for sampling the various signals of the engmne for debugging or “reverse

engineering” purposes.

Engine
Wiring
Harness

Pin taps for
I monitoring
Injector
command
voltage, etc.

) Driven Cabie
Harness (plugged in)

Figure 6.5  Engne harness, Drivven harness, and OE ECM harness adapter board
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For the OE ECM to function properly it had to run as if it was in a vehicle;
therefore, several signals had to be simulated. = Pedal position (voltage) was supplied by
the dynamometer controller while a custom idle validation circuit closed a switch at
approximately 10 percent pedal position. The idle validation circuit is required by the
OE ECM as a safety check for pedal position. The ECM was non-standard, and therefore
aftertreatment system simulation was not required. The vehicle controller area network
(CAN) signals were simulated using an NI compact Real-Time I/O (cRIO) two port CAN
module (NI 9853) in conjunction with a field programmable gate array (FPGA) controller
and LabVIEW Real-Time software. The CAN protocol was implemented in the open
LabVIEW environment using the SAE J1939 standard. The resulting front panel and
block diagram of the CAN interface VI is shown in Appendix C. With the CAN system
in place, CCVS, EBCI1, EBC2, PTO, CMI1, AIR1, and HRW signals could be simulated
to prevent the ECM from generating new faults. In addition, existing faults could be
viewed for debugging purposes.

Intake and exhaust streams were oriented vertically, as shown in Figure 6.6, due
to the required laminar sections for air flow rate measurement in the intake and smoke
measurement in the exhaust. The exhaust stream had to be vented directly through the
roof because the high exhaust flow rates of the MX10 engine exceeded the capabilities of

the existing exhaust ventilation system.
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Intake pipe (6 inch)

Exhaust pipe (4 inch)

Figure 6.6  Intake and exhaust plumbing with vertical orientation

Upon completion of the test cell setup, the engine and the dynamometer were run
over the entire speed-load operating range, ensuring both engine and dynamometer would
operate at full capacity and that all engineered subsystems performed adequately. The
“lug curve,” or full load output over the engne’s operating range is shown in Figure 6.7.
One subsystem that lacked the necessary robustness for full load operation was the
charge air system. The charge air routing pipes at first consisted of separate sections

joined with straight and elbow silicone couplers. To withstand the significant boost
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pressures and forces in the charge air system, the intake charge air plumbing had to be

welded together, using as few silicone couplers as possible, as shown in Figure 6.8.
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Figure 6.7  MSU generated OE ECM Lug Curve
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Figure 6.8  Intake charge air plumbing

The propane mjection system used consists of six injectors, two rails, a filter, a
pressure regulator, and an emergency shutoff solenoid. The injectors and filter were
obtained from a G-Volution propane injection kit. The pressure regulator and fuel
shutoff solenoid were specified for LPG operation up to 50 psig.  Propane storage
consisted of three 100 Ib. propane cylinders connected in parallel Each cylinder had a
high pressure regulator (up to 150 psi) and a flash arrestor. A schematic of the propane
system is shown in Figure 6.9. The propane was fumigated into the intake air before the

turbocharger and the fuel stream was directed in the downstream direction.
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Figure 6.9  Propane injection and storage systems

6.2 Drivven Controller Hardware

The next step for the MXI10 engine was to transition to an open-architecture,
LabVIEW-based engine controller manufactured by Drivven, Inc. The system primarily
consists of several National Instruments (NI) compact reconfigurable mput / output
(cRIO) expansion chassis and specialized Drivven input and output modules. All of the
cRIO expansion chassis communicate with an NI PXI system using an FPGA mterface.
This allows for very rapid and robust control of multiple engine parameters in real-time.
A schematic of the Drivven cabinets containing cRIO expansion chassis, cRIO modules,

voltage rails, and relays, and a signal conditioner is shown in Figure 6.10.
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Drivven Cahinet 1 Drivven Cahinet 2

cRIO 1 cRID 2 cRIC 3
DI Driver | A/D Carnba 11 5853 {CAN|
DA Driver | Relays D waan | " ueso

O Driver PFI Mgduie Ml 2401
O Driver PFI Midlue

Signal
Canditioner

i
E
=

“Waltage Radis|
altage Halis)]
Woltape Raidis|

Harness Connectors Harness Connectors

Figure 6.10 Drivven cabinets

The cRIO modules each interface with a cRIO expansion chassis, which in turn
mterfaces with a field programmable gate array (FPGA) controller, or target, in the PXI
chassis. As there are a finite number of logic gates on a given FPGA circuit, the large
quantity of logic required for this application caused the FPGA chassis to be split
between two separate FPGA targets: (1) modules that required engine synchronous mnput
and output (I/O) and (2) modules that did not require engne synchronous I/O
(asynchronous). The synchronous FPGA target is an NI 7853R FPGA card, utilizing a
Virtex V series FPGA mtegrated circuit. The smaller NI 7813R FPGA card is used for
asynchronous control and utilizes Virtex II seriecs FPGA hardware. The synchronous
target interfaces with the following modules: four three-channel Drivwen direct injection
(DI) drivers which control six solenoid injectors and six electronic unit pumps, two

Drivven port fuel mnjection (PFI) drivers which control the main power relay (MPR),
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EGR valve, and six propane fuel injectors, a Drivven AD Combo module which receives
and conditions analog nput from the engne sensors, and an NI 9401 module which
receives the encoder signals. The asynchronous target interfaces with a Drivven Oz
sensor (UEGO) module which controls closed loop fueling (not used), an NI 9853 CAN
module for CAN communication, and an NI 9411 digital input/output (DIO) module for

debugging engine timing signals (when needed).

6.3 Drivven Controller Software

The LabVIEW software for the DRIVVEN system requires several "levels" of
code. The base of the system exists at the FPGA level, where the software mteracts with
the cRIO expansion chassis modules and current engine crankshaft position is calculated
at approximately 40 MHz The primary functionality of the system exists on the Real-
Time level, where mputs are read from the FPGA level, new control parameters
calculated, and outputs are written to the FPGA level at approximately 100 Hz Fmally,
the top-most level is the CalVIEW user interface, which allows user interaction with the

Real-Time level without adding unnecessary code.

6.3.1 FPGA

At the FPGA (field programmable gate array) level, tasks such as engine position
tracking, fuel mjection, and CAN /O are performed. These tasks are time-sensitive and
must be extremely reliable. The FPGA environment is suitable for these types of tasks
because of its embedded nature. All FPGA code must be compiled after which it is
deployed onto a FPGA target; that is, an mtegrated circuit designed to implement user

designated logic or code. All FPGA code deployed onto the target can operate very

103

www.manaraa.com



rapidly. The code implemented in the engine-synchronous target operates at 40 MHz,
and most timing related tasks are discretized mnto 40 MHz clock ticks. Other tasks, such

as CAN I/O happen as quickly as the FPGA target can operate the logic.

6.3.1.1 Engine Synchronous FPGA
There are four major parts of the engne synchronous FPGA code, shown in
Appendix D:

1. Engine position tracking (EPT) subVI — tracks the position of the engine
based on Boolean signals from Hall effect or variable reluctance (VR)
sensor mputs (crank and cam puts) and provides a cluster of data
including current position in ticks as well as a “Fuel/Spark Supervisor”
signal, which is used to communicate engine position to other engine-
synchronous device drivers on the FPGA level.

2. Direct mjection (DI) driver subVIs — fires the injector and electronic unit
pump solenoids at a specified engine position for a given duration with a
calbrated current profile; the device driver interfaces with the EPT “Fuel
Spark Supervisor” for an engine position input.

3. Port fuel injection (PFI) driver subVIs — may be configured as either
synchronous or asynchronous (in this case, asynchronous since fuel is
fumigated before the intake); the primary inputs are frequency, duration,
and current profile.

4. Drivven Combustion Analysis Toolkit (DCAT) — this portion of the FPGA

code uses the optical crank encoder mputs through the NI 9401 cRIO

104

www.manaraa.com



module to track engine position and communicates with the high speed

DAQ cards (S-Series) through the PXI triggers on the PXI backplane

6.3.1.2  Asynchronous FPGA

Because the UEGO and 9411 modules are not currently used, only the CAN /O is
required in the asynchronous FPGA code. CAN communication is required using the
Drivven controller n order to communicate with the humidity sensor and turbocharger
VNT actuator on the secondary engine CAN network. The following portions of the
FPGA code are shown in Appendix D:

I. CAN mput — reads the incoming CAN messages and places them mto a
First In, First Out (FIFO) style queue.
2. CAN output — removes CAN messages from the outgoing FIFO, formats

the bits appropriately, and writes the messages to the CAN bus.

6.3.2 Real-Time and Control Logic

Most control logic exists at the Real-Time (RT) level The four functions of the
RT code are: (1) engne control, (2) CAN communication, (3) analog outputs, and (4)
data acquisition. Unlike the FPGA level, the RT level offers more flexibility in terms of
code size, structure, and allows quick editing as it does not need to be compiled;
however, it gains these advantages at the expense of timing and reliability. =~ Whereas the
engine synchronous FPGA code operates at 40 MHz, the engine control portion of the RT
code only operates at approximately 100 Hz, or a period of about 10 milliseconds, and

tends to vary slightly from loop to loop.
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The engine control portion of the RT code is split into three primary sections, split
using a flat sequence structure (which ensures that operations are performed in sequential
order), as shown in Appendix D:

1. Read Inputs — Reads and processes inputs from the FPGA level; this
includes analog sensor info, engine speed, module status, and fault
detection.

2. Control Algorithms — Processes new control values based on new data
mput from step one; this includes torque command, fueling rate, EGR rate,
and VNT actuation.

3. Write Outputs — Process and writes new outputs to the FPGA level based
on new data from step two; these include injector and pump timing and
duration as well as PFI and relay (“LowSide”) control.

In addition to these primary functions, the RT level also handles the bulk of the
CAN communication and the SAE J1939 protocol. These functions exist in a separate
subVI (a subroutine in LabVIEW) which operates in parallel with the aforementioned
sequence structure.  Other PXI hardware (analog output, power supply) are also
controlled at the RT level, each of which has a separate subVI for its tasks. The last
major piece of logic at the RT level is the Drivven Combustion Analysis Toolkit

(DCAT), a data acquisition related feature to be discussed in a later section.

6.3.2.1 Torque Command
The torque command subVI calculates a “desired BMEP” based on engine speed
and pedal position in percent. Based on engmne speed and pedal position, a lookup table

mterpolates for a desired BMEP. The output of this subVI is used, along with engne
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speed, in almost every other control subVI as lookup table nputs. Before outputting the
BMEP value, a manual override selector allows the user to set a desired BMEP manually

in the user mterface.

6.3.2.2  DieselInjector and Pump Control

Diesel solenoid injection and electronic unit pump (EUP) control are operated
solely in “open loop” mode; that is, there are no feedback-based engine sensors, ie., an
oxygen sensor in the exhaust stream. This subVI uses the desired BMEP value from the
aforementioned Torque Command subVI and the engne speed as mputs to two-
dimensional lookup tables containing values such as the start of injection solenoid
activation (SOI), ijection duration, start of pump solenoid activation (SOP), pump
duration, and up to four additional injector and pump actions (two pre- and two post-
mjections). As with the Torque Command VI and all other control subVls, there are
limits for the various control variables as well as manual overrides. The manual controls
were the primary method of controlling pilot quantity during dual fuel operation.

Before operation, the DI modules must be calibrated to a known current profile.
Using the correct current profiles for the injectors and pumps are critical for correct
operation. The basic theory of operation requires that a high, or “peak,” voltage (50 V)
be applied to the solenoid to open the injector or pump. After a peak time (usually in
milliseconds), or a peak current is reached, the voltage drops to battery voltage (12V),
switchng ON and OFF to dither the current at its “hold” value (about 10 A) i order to

keep the solenoid open for its duration.
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6.3.2.3 Engine CAN Bus and VNT Control

The two devices on the secondary engine CAN (E-CAN) bus are the turbocharger
VNT actuator and the humidity sensor. This CAN bus follows the SAE J1939 protocol
but uses proprietary identifiers for turbocharger communications. Data written to the
turbocharger include the actuator state and the actuator position requested.  The
turbocharger VNT actuator is controlled on a percent basis, from 0 to 100 percent n 0.1
percent steps. The VNT actuator position is calculated based on a feed-forward lookup
table using engmne speed and desired BMEP. Data received from the turbocharger
includes actuator state, position, error state, and temperature. Data such as relative
humidity, intake air temperature (IAT), and intake air pressure are read from the humidity

sensor CAN data.

6.3.2.4 EGR Valve Control

The EGR valve is controlled using two LowSide driver channels on the first PFI
module and pulse width modulation (PWM) to control current through the EGR valve
actuator. The two channels act in unison to provide the necessary electrical current to the
valve without saturating either channel. The frequency and duty cycle (percent ON time)
of the EGR signal varies in order to mamntain a constant ON duration of 10 ms. Position

feedback via a 0.5 to 4.5 V signal allows precise PID control of this variable.

6.3.2.5 Propane Injector Control

Since propane will be fumigated before the turbocharger, engine synchronous
control is not necessary for this setup. The PFI injector current profile is similar to the DI

control, requiring both peak (4 A) and hold (1.5 A) current values, however an engine
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position is not required. Similar to PWM operation, the propane fuel injectors operate at
a given frequency, which in this case is proportional to engine speed. Injection duration

is controlled manually via the user interface.

6.3.3  User Interface

The CalVIEW mterface allows interaction with the RT level without adding
additional code, which could potentially inhibit performance of the RT target. CalPoint
controls and indicators, placed at the RT level, communicate directly with controls and
indicators in the Host VI. The user interface for the engne controller is shown in Figure

6.11. Despite the somewhat complex front panel, the block diagram for the Host VI is

very simple, requiring little code other than plots, etc.
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Figure 6.11 CalVIEW — Engine control user nterface
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6.3.4  Calibration

Before operating the MX10 engine on the Drivven controller, the various control
parameters had to be mapped from the OE ECM during operation. A test matrix ranging
from 600 to 2000 RPM engine speed n 100 RPM increments and 0 to 22 bar BMEP in 2
bar increments was completed. Values of ijector solenoid timing and duration, pump
solenoid timing and duration, boost pressures, VNT actuator position, and EGR valve
position were recorded and arranged into two-dimensional speed versus load tables. The
minimum pedal position required to operate the engine at each speed was found and was
given the “O BMEP” designation. Any pedal position below this threshold while at the
given speed would return a “negative BMEP,” corresponding to a lower operating point,
which allowed engine speed to decrease. Speeds lower than 600 RPM (during engine
cranking) were not able to be mapped; therefore, tables were created by trial and error.
The phasing of the SOI and SOP were kept constant on a time basis rather than on engine
position (crank angle basis) throughout cranking.

After the Drivven system was calibrated, a maximum load sweep was completed
from 1000 to 2000 rpm. As shown in Figure 6.12, the variation between the maximum
load for the Drivven controller and data provided from the manufacturer was less than 3

percent from 1100 to 2000 rpm.
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Figure 6.12  Percent variation in lug torque between Drivven and manufacturer data

6.4 TestCell Instrumentation

The test cell mstrumentation for the MX10 engine test cell is similar to that of the

Volkswagen engine test cell in many aspects. Relevant instrumentation details are given

in Table 6.2.
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Table 6.2  Instrumentation Specifications

Data Type Sensor/instrument  Type Accuracy
Temperature Thermocouple K Greater: 1.1 °C or 0.4%
Pressure for LFE Omega MM Absolute 0.08% FS BSL (30 psia)
Pressure for LFE Omega MM Differential 0.03% FS BSL (10 inH,0)
Pressure for boost Omega MM Gauge 0.25% FS BSL (50 psig)
Mass air flow Meriam MC2-6 Laminar Flow

Element (LFE)
Mass propane flow  Micro Motion Coriolis 0.35% of reading
Mass diesel flow Micro Motion Coriolis 0.05% of reading
Smoke AVL415S Filter ?ég(gngSN 3% of
NO, ESA EGAS 2M CLD 1% FS
NO ESA EGAS 2M CLD 1% FS
THC ESA EGAS 2M FID 1% FS
CO-low ESA EGAS 2M NDIR 1% FS
CO-high ESA EGAS 2M NDIR 1% FS
CO, ESA EGAS 2M NDIR 1% FS
Cylinder pressure Kistler 6125C Piezoelectric Lin: 0.4% FSO
Fuel pressure Kistler 4067C3000 Piezoresistive EP Lin: 0.5% FSO

6.4.1 Steady State Instrumentation

Engine coolant, dynamometer, post-intercooler, intake mixture, fuel, and post-
turbo exhaust temperatures were measured with K-type thermocouples. Typically, these
were mounted using 0.25 inch Swagelok compression fittings.

Diesel volume flow rate was measured with an Emerson Micro Motion coriolis
mass flowmeter (Model: CMFO025M319N2BAEZZ7). To facilitate accurate fuel
measurement with one flow meter and to allow fuel return simultaneously, a “diesel level
tank” manufactured by Application Engineering, Inc. was used. The level tank functions

by regulating flow from the flowmeter using a float device; as mass exits the system, ie.
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consumed in the engmne, fuel is supplied to the system at the same rate. Fuel was
supplied to the level tank by an Airdog Class 8 Fuel Preparator pump/filter combination
unit, which removes gaseous bubbles and water from the fuel n addition to solid
contaminants. A typical bypass style fuel pressure regulator was used to regulate
pressure at the mlet of the level tank to a maximum of 6 psig. Fuel temperature was
conditioned using a shell-and-tube heat exchanger, three-way mixing valve, and a
temperature controller. Fuel temperature was mamntained at 40+1°C. A schematic of the
fuel system is shown in Figure 6.13. Intake air mass flow rate was measured with a
Meriam MC2-6 Laminar Flow Element. Straight six inch intake piping with the lengths
of ten pipe diameters upstream and five pipe diameters downstream was used to facilitate
laminar intake air flow. The primary gaseous fuel (propane) mass flow rate was also
measured with an Emerson Micro Motion coriolis mass flowmeter (Model:

CMF025M319N2BAEZZ7).

113

www.manaraa.com



Fuel Level
Tank
From Fuel Coriolis
Fump / Filter  Flowmeter
= Fuel
== A Circulation To
Pump Engine
Thermocouple O L= b >
——{w ] Shut-off
l 1 Valves
Temp ” L B < —
Controller + From
_,.r_ ;* I%” - Engine
Mixing
Valve I
Process \T Process
Supply / Return
— \|  Foerrx )—1—{ >

Figure 6.13 Diesel measurement and conditioning system

Pressures in the test cell were measured with Omega MM Series custom pressure
transducers. The absolute pressure transducer (for LFE flow) had a 0-30 psia range,
differential pressure (for LFE flow) had 0-10 n-H2O range, and the remaining gauge
pressure transducers (for boost, exhaust, fuel, coolant, propane, and oil) had ranges of

either 0-50 psig or 0-150 psig. Pressure transducer accuracies and other details are given

in Table 6.2.
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All gaseous exhaust emissions were measured downstream of the turbocharger
turbine.  Gaseous emissions were routed through an emissions sampling trolley to an
mtegrated six-gas emissions bench (EGAS 2M) manufactured by Altech Environnement
S.A. and smoke was measured with an AVL 4158 variable sampling smoke meter. The
emissions bench provides measurements for total hydrocarbons (THC), oxides of
nitrogen (NO, NOx), carbon dioxide in the exhaust and intake mixture (CO2, CO2-EGR),
carbon monoxide (CO), oxygen (O2), and ammonia (NH3). Smoke emissions are given in
filter smoke number (FSN) and were sampled after 10 pipe diameters of straight exhaust
pipe for lammar flow. Particulate size distrbution was measured with a TSI Engine
Exhaust Particle Sizer (EEPS). Exhaust emissions were sampled with a thermal dilutor at
a factor of 12261 and then passed through the EEPS. Emissions speciation was achieved
with an AVL Fourier Transform Infra-red (FTIR) SESAM i60 FT. This device uses
FTIR spectroscopy to measure pre-calibrated gas components of diesel exhaust, including
those measured by the six-gas emissions bench as well as formaldehyde, acetaldehyde,

formic acid, sulfur dioxide, methane, propane, and other various hydrocarbons.

6.4.2 Transient Instrumentation

Transient measurements such as cylinder pressure require an engine-position
based clock for data acquisition. A BEI optical encoder with 0.1 CAD resolution (3600
pulses per revolution) was used for this purpose. A custom crankshaft adapter and
custom encoder bracket were designed and fabricated mn-house to facilitate mounting.
Engineering drawings with dimensions are shown in Appendix B. The bracket, shown in
Figure 6.14, was mounted rigidly with the engne (not attached to the vibration-isolated

mounting points).
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Figure 6.14 Encoder bracket, crankshaft adapter, and coupler

In-cylinder pressure for cylinder 6 was measured using a Kistler 6125C
piezoelectric pressure transducer mounted slightly recessed from the surface of the
cylnder head n a Kistler sleeve adapter (neither flush mounted nor having a long or
narrow measuring bore). A Kistler 5010B charge amplifier with a “short” time constant
setting was used to condition the signal output from the piezoelectric pressure transducer.
Fuel line pressure for cylinder 6 was measured using a Kistler 4067C3000 piezoresistive
sensor and a Kistler 4618A0 amplifier conditioned the signal To sample the fuel
pressure signal, a Kistler 6533A11 clamp-on fuel line adapter was used. An example of

the fuel pressure signal is shown in Figure 6.14. Injector needle lift was unavailable;
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therefore, the injector command voltage was sampled for “apparent SOL” also shown in

Figure 6.15.
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Figure 6.15 Example fuel pressure and injector command signal at 10 bar BMEP

6.5 Data Acquisition with DCAT

The data acquisition software used for both steady state and transient combustion
data was the Drivwven Combustion Analysis Toolkit (DCAT). The DCAT is
comprehensive combustion analysis software presented as an example VI composed of
many subVIs, many of which are password protected. While some portions of DCAT are
not alterable, the code is arranged such that the user can access almost any data recorded
or processed by DCAT and use it however he or she may wish. This offers considerable

flexibility and allows direct integration with the engine control portions of the code.
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To use DCAT, the PXI hardware must be configured in a specific arrangement.
The method used to communicate hardware triggers from the FPGA to the S-Series
hardware has two requirements. The first is that the FPGA controller hosting the DCAT
FPGA code must be installed in the first PXI slot after the controller. The second is that
jumpers must be installed in the S-Series hardware, connecting digital ports to
programmable function interface ports for communication and triggering.  There are
many setup options for DCAT, including engine geometry, filters, and heat transfer
correlations. The numerous settings are outlned in Appendix E. The Drivwen DCAT
manual, incorporated into the DCAT user interface, further details the hardware setup and
software configuration options.

Steady state data, referred to as “medium speed” channels n DCAT, were
sampled at a rate of 1 kHz These channels included dyno speed and load, pressures,
temperatures, flow rates, and emissions. As data are recorded, DCAT associates the
incoming medium speed data with the cycle during which they were recorded and then
averages all the samples recorded during a given cycle, leaving cycle-resolved medium
speed data. In addition to the individual measurements, DCAT also calculates statistical
data such as the mean, standard deviation, and coefficient of variation (COV) of every
signal.

The time averaged value of select channels from the medium speed data are
collected and used to process additional calculated channels such as mass air flow,
BMEP, fuel conversion efficiency, percent energy substitution (PES), equivalence ratio,
and brake-specific emissions (following the SAE J1003 recommended practice). The
calculated channels are then remnserted into the DCAT interface as “slow speed” channels
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at a rate of 1 Hz. In this manner, all data are recorded in a consolidated location. In

addition, DCAT records all CalPoint values without DCAT association (controls,

indicators, etc.).
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CHAPTER VII
CONVENTIONAL AND LOW TEMPERATURE DUAL FUEL COMBUSTION IN

MX10 ENGINE

7.1 Introduction

The purpose of this chapter is to investigate and to optimize conventional and low
temperature dual fuel combustion (LTC) using diesel-ignited propane in a heavy-duty
diesel engme. The dual fuel combustion mode will first be characterized using stock
engine control parameters over a range of engmne loads and primary fuel concentrations.
This test relates to previous experiments on the VW TDI engne, allowing some
comparison. In addition, this test extends the dual fuel combustion characterization to
higher BMEP conditions that were not achievable with the VW TDI engne and
mtroduces EGR as a variable (not present on the VW TDI). Fueling strategies, injection
strategies, EGR rates, and intake boost pressures will be used to optimize the dual fuel
combustion mode for maximum percent energy substitution (PES) of propane and
minimum NOx and smoke emissions. Next, injection strategies for LTC (e.g., very early
mjection) will be used to separate the ijection and combustion events to promote mixing
and simultaneously decrease NOx and smoke emissions, as in ALPING LTC combustion
[Srinivasan 2003]. Injection timing, fueling strategy, turbocharger VNT actuation, and
EGR rate control will be used to optimize the combustion process, ie., to increase fuel

conversion efficiency, to reduce emissions, or to extend operation by reducing cyclic
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combustion variability. ~ Other emissions, such as unburned hydrocarbons and carbon

monoxide (often observed with dual fuel combustion) will be minimized, if possible.

7.2  Objectives

The objectives of this work are as follows:
1. Investigate conventional diesel-ignited propane dual fuel combustion on a
modern, heavy-duty diesel engine.
2. Implement and assess dual fuel LTC combustion in a multi-cylinder
heavy-duty diesel engine by optimizing the injection strategy, fueling

strategy, EGR rate, and intake boost pressure.

7.3 Results and Discussion

Two sets of steady state, diesel-ignited propane dual fuel experiments were
performed using the heavy duty MX10 diesel engine. Engmne speed was mamtained at

1500 rpm for all experiments.

7.3.1 Conventional Dual Fuel Constant BMEP Experiments

In the first set of dual fuel tests, engine load was maintained at four constant
BMEP conditions: 5 bar, 10 bar, 15 bar, and 20 bar. Stock control parameters were used
for mjection timing, pump timing, EGR valve position, and VNT actuator position and
were based on the “diesel-only” condition at each load pomt. At each engme load, the
diesel pilot injection duration and primary fuel (propane) flowrate were adjusted to
achieve various primary fuel concentrations within +1 percentage points, ranging from
diesel-only conditions to the maximum achievable PES of propane in mncrements of 10

percent. The experimental matrix for this set of tests is shown in Table 7.1 and ranges of
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Pin, Tin, EGR rate, and equivalence ratio (phi) are given in Table 7.2. The EGR valve and
VNT positions varied based on the engne load but remamned constant for different
concentrations of primary fuel, however, less available energy in the exhaust gas yielded
progressively lower intake boost pressures with increasing PES. In this first set of tests,
the operating points were attained by gradually reducing the pilot quantity and increasing
propane concentration while maintaining the desired load. At 5 bar BMEP, a minimum
pilot jection duration lLmited the maximum PES of propane to 86 percent (without
changing diesel injection pressure). At 10, 15, and 20 bar BMEPs, a maximum pressure
rise rate (MPRR) (greater than 15 bar/CAD) and excessive combustion noise (greater
than 94 db) limited the PES of propane to 60, 33, and 25 percent, respectively. Similar
trends were observed by Goldsworthy [2012] at high load (BMEP = 17 bar) in a diesel-
ignited propane dual fuel engne, where the maximum PES of propane (35%) was limited

by extreme MPRR (MPRR = 58 bar/CAD) and knock.

Table 7.1  Experimental Matrix for PES Effects at Different BMEPs

BMEP Percent Energy Substitution

(bar) 0%  10% 20% 30% 40% 50% 60% 70% 80%  86%
5 X X X X X X X X X X
10 X X X X X X X 0 o)

15 X X X X 33%

25 X X X 25%

Note: Data points marked by an “O” indicate that optimization was required
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Table 7.2

Inlet Condition Ranges for Constant BMEP Experiments

BMEP (bar)  Pin (bar) T (°C)  EGR (%) Phi
5 1.66—1.58 44.7-40.2 355-33.9 0.50-0.56
10 237-201 323-319 255-254 0.53-0.60
15 290-2.77 343-322 189-17.5 0.54-0.55
20 340-3.25 372-28.8 168-152 0.61-0.62

7.3.1.1

Combustion Behavior

Heat release rate and cylinder pressure profiles for 5, 10, 15, and 20 bar BMEP
conditions are shown in Figure 7.1. Overall, the heat release rate results of conventional
diesel-ignited propane dual fuel combustion were similar to previous results obtained
with the light-duty VW TDI engine, although much higher BMEPs were possible with
the MX10 engmne. Certain aspects of the MX10 engne proved advantageous for diesel-
ignited propane dual fuelng, increasing the achievable PES of propane at low and
medium loads. The first major advantage was the lower compression ratio, resulting in
lower bulk temperatures near TDC. The second advantage was the added cooled EGR
loop, with which varying quantities of EGR could be used to decrease available oxygen
in the intake charge, decreasing temperatures and reducing combustion rates. Both of

these advantages resulted in increasing the achievable PES of propane at a given load

during conventional dual fuel combustion by reducing MPRR.
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Figure 7.1 = Heat release rate vs. crank angle for 5, 10, 15, and 20 bar BMEPs and PES

of propane ranging from baseline (diesel only) to maximum

At low load (BMEP = 5 bar), as the PES of propane was increased, the first stage
of heat release decreases while the second stage increases in magnitude. This shift from
first stage to second stage is accompanied by a retardation of the combustion phasing
(CA50) and a decrease in the combustion duration (CA10-90), as shown in Figure 7.2.

As the PES of propane was increased, an increasing percentage of fuel was burned by

flame propagation, thereby reducing the percentage of heat release early in the cycle.
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However, heat release ends at approximately the same engine position, tapering off at
approximately 25 DATDC. Therefore, combustion is both retarded and shortened in
duration.  This behavior results in low temperatures and bulk quenching, contributing
significantly to high CO and THC emissions as well as low fuel conversion efficiency at

high PES.
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Figure 7.2 Combustion phasing (CAS50) and duration (CA10-90) for diesel-ignited
propane at 5, 10, 15, and 20 bar BMEP

At medium load (BMEP = 10 bar), a different trend was observed. As opposed to
low load, the CA50 was advanced while the CA10-90 decreased. At this load, cylinder
pressures were higher, causing increased bulk temperatures. As the PES of propane was
increased, a larger portion of fuel was burned early in the cycle. This was caused by
increased burn rates in the propane-air mixture due to the relatively high reactivity and

laminar burning velocity of propane, resulting in advanced CAS50 and decreased CAI10-
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90. At high PES of propane at 10 bar BMEP (PES > 60), the CA50 began to reverse its
trend and retard. As the pilot quantity was reduced sufficiently in size, the mitial heat
release associated with the diesel-propane mixture retarded, however peak heat release
rate continued to increase and CA10-90 continued to decrease.

At high loads (BMEP = 15 and 20 bar), a third trend was observed. As the PES
of propane was increased, the CAS0 advanced and the CA10-90 increased. At these high
loads, bulk temperatures and fast propane burn rates prevented high PES operation due to
excessive MPRR. Therefore, most of the heat release was due to diesel combustion.
Also, at these loads, bulk temperatures were high enough to facilitate propane auto-
ignition. As a result, increased PES of propane advanced the start of combustion while
diesel njection regulated the end of combustion, causing CA50 to advance and CA10-90

to be increased.

7.3.1.2 Emissions and Performance

Two significant benefits for dual fuel combustion are improved NOx and smoke
emissions. However, low load conditions can result in increased CO and THC emissions.
As shown i Figure 7.3, these trends follow mostly as expected. At almost all conditions,
NOx emissions are decreased or maintamed and smoke emissions are reduced with
sufficiently high PES of propane, while CO and THC emissions generally increase with

PES, though more prominently at lower loads.
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Figure 7.3  Brake-specific NOx, smoke, brake-specific CO, and brake-specific HC
emissions for 5, 10, 15, and 20 bar BMEP and PES ranging from baseline

(diesel) to maximum

At 5 bar BMEP, low boost (1.62 to 1.58 bar) and high EGR rates (35%) were the
reason for the high smoke associated with straight diesel operation. Oxygen
concentration was low enough to inhibit soot oxidation while temperatures were not low

enough to prevent its formation. Increasing the PES of propane reduced the size of the
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diesel spray, which consequently reduced the size of the soot formation regions (locally
rich areas) and smoke to low levels. Both CO and THC emissions mitially increased
steadily with PES, then CO emissions peaked and decreased while THC emissions
increased at a higher rate. This behavior is likely due to both CO and THC competing for
oxidation due to the high EGR rate and decreasing intake boost pressure; this behavior
was previously noted by Shoemaker et al. [2012].

At 10 bar BMEP, trends smmilar to those at 5 bar BMEP were observed, however
CO and THC emissions were considerably lower. At high PES, NOx emissions increased
slightly, however they were still below baseline diesel conditions. The increase in NOx
emissions was likely due to the very high heat release rates resulting m high local
temperatures, which facilitated NOx formation. Similarly, CO emissions decreased at
these conditions, as CO oxidation requires high temperatures.

At 15 and 20 bar BMEPs, NOx emissions are decrecased while CO and THC
increased less than lower load conditions. As PES is increased, shortened pilot injection
duration (and smaller diesel sprays) contributed to the decrease in NOx while high bulk
temperatures kept CO and THC emissions relatively low. At 15 bar BMEP, smoke
emissions were unchanged with increasing PES, however at 20 bar BMEP, smoke
emissions increased. Due to the relatively long injection duration of pilot fuel at 20 bar, a
considerable amount of fuel was mjected during the expansion stroke, facilitating high
exhaust temperatures and therefore soot oxidation. As the pilot injection duration was
decreased, less fuel was injected in the expansion stroke, reducing exhaust temperatures,

lowering intake boost pressure, increasing equivalence ratio, and reducing soot oxidation.
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Fuel conversion efliciency and combustion efficiency trends are shown in Figure
7.4. The largest factors affecting FCE are the combustion efficiency, CA50, CA10-90,
and pumping losses. Increasing PES of propane had the largest effect on combustion
efficiency. As PES of propane was increased, lower local equivalence ratios yielded
lower local temperatures which resulted i partial oxidation and bulk quenching of the
propane-air mixture, and therefore higher CO and THC emissions, respectively. Because
the propane fuel 1s mcompletely burned, combustion efficiency suffers. These effects are
more prominent at lower loads than higher loads due to lower bulk temperatures. As the
load increased, the variable nozzle turbine of the turbocharger allowed for increased
turbocharger efficiency, increasing mtake boost pressure while minimizng pumping
losses which remain relatively constant despite increasing air and fuel flowrates, as
shown in Table 7.3. This resulted in an increase in FCE. The FCE also tracked with
combustion phasing; as CA50 neared TDC, FCE increased and vice versa. This trend is

most noticeable with increasing PES.

Table 7.3  Ranges of gross, pumping, and net IMEPs for constant BMEP conditions

BMEP (bar) Groas)alrl;/[EP Pumpzlf)ir)IMEP Ne(tblall\f)EP
5 7.0-17.8 -0.6 —-0.5 64-173
10 12.4-12.0 -0.6 —-0.5 11.8—-11.5
15 17.9-17.7 -0.7--0.7 17.2-17.0
20 234-232 -0.8—--0.8 22.6-22.4
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Figure 7.4  Fuel conversion efliciency and combustion efficiency for 5, 10, 15, and 20
bar BMEP and PES ranging from baseline (diesel) to maximum

7.3.1.3  Optimizing for the Maximum PES of Propane
7.3.1.3.1  Fueling Strategy

Based on the MPRR plot from the initial testing, shown in Figure 7.5, it was
hypothesized that a higher PES of propane could be achieved at higher loads with a
different fueling strategy. At 5 bar BMEP, the MPRR first increased then decreased as
the PES of propane was increased. The mitial mcrease in MPRR is due to the first stage
of heat release; as the air-fuel mixture surrounding the mitial diesel jet becomes more
fuel-rich, the rate of heat release increases, causing higher MPRR. As the pilot quantity
decreases at high PES, however, the mitial heat release diminishes causing lower MPRR.
At 10 bar BMEP, the MPRR increased until it exceeded the self-imposed operational
limit of 15 bar/CAD as PES increased. The steeper increase in MPRR is related to the

second stage of heat release and the relatively high reactivity of propane compared to
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diesel. At 30 PES of propane, a shift in MPRR Iocation occurs; at low PES MPRR
occurs during the mitial heat release while above 30 PES the MPRR occurs during the
second stage of heat release. At a BMEP of 10 bar, higher pressures yield higher bulk
temperatures, causing a sufficiently fuel-rich propane-air mixture to burn more quickly,
yielding higher heat release rates. At 15 and 20 bar BMEPs, the shift in MPRR location
from the first to second stage of heat release occurs progressively earlier in terms of

increasing PES of propane.
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Figure 7.5  MPRR versus PES for 5, 10, 15, and 20 bar BMEPs; 10 bar* represents the
operating conditions achieved by optimization

To suppress the high heat release rate at 10 bar BMEP and to increase the PES of

propane, optimization of the fueling strategy was required. Instead of gradually
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decreasing the pilot and increasing propane concentration while maintaning load at 10
bar BMEP, the operating conditions were achieved by first fixing the desired pilot
quantity and then increasing propane fueling to reach the desired load. This strategy was
chosen in an effort to reduce the pilot quantity, thereby reducing in-cylinder temperatures
during transient operation while achieving the desired steady state operating point. By
adopting this strategy, the maximum PES of propane at 10 bar BMEP was increased to 80
percent, as denoted by the “O” data pomnts n Table 7.1. A decreased pilot quantity
permitted a higher PES to be achieved, but the rapid rise in MPRR was only delayed.
The maximum PES of propane was again lLmited by a high MPRR and excessive
combustion noise due to rapid heat release. This operating condition might be viewed as
quasi-steady because slight changes in operating conditions led to significant increases in

MPRR during operation.

7.3.1.3.2  Fuel Injection Timing

To reduce the MPRR at 10 bar BMEP and 80 PES of propane, injection timing
variations were investigated. Injection timings ranged from the stock timing, 8.6 degrees
before top dead center (DBTDC), to 2.6 DBTDC i 1 degree increments. As the
ijection timing was retarded, the peak pressure reduced in magnitude until 6.6 DBTDC,
as shown in Figure 7.6. The MPRR was decreased because MPRR location shifted back
to the first stage of heat release; this is due to the second stage of heat release occurring
later in the expansion stroke, resulting in lower peak pressures, lower bulk temperatures,
and consequently lower fuel conversion efficiencies (FCEs). Retarding the injection
timing beyond 6.6 DBTDC led to an increase and slight advance of the peak heat release

rate. This trend is mitially counter-intuitive, but retarding the injection created more
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exhaust energy to be available to the turbocharger, increasing boost pressure and
therefore bulk temperatures. Higher bulk temperatures resulted in faster heat release
rates during the second stage of combustion associated with flame propagation. Once
mjection is sufficiently delayed (2.6 DBTDC), high intake boost pressures result in a
second stage of heat release similar to that of 8.6 DBTDC. In turn, this results in a
significant increase in MPRR because MPRR location is shifted back to the second stage
of heat release, causing the ‘“jump” shown i Figure 7.6 and lmiting more retarded
mjection timings. Based on the MPRR / FCE tradeoff, an mjection location of 6.6

DBTDC appears to be the optimal choice within this range of injection timings.
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Figure 7.6 Cylinder pressure, MPRR, and FCE for a range of injection timings

BMEP = 10 bar, PES = 80 %, Tin = 26.8°C

7.3.2  Dual Fuel LTC Experiments

The second set of experiments targeted dual fuel LTC operation, utilizing early

mjection strategies similar to those used m ALPING combustion [Srinivasan 2003,
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Krishnan 2004]. A schematic of the dual fuel LTC concept is shown in Figure 7.7. In
this concept, a lean propane-air mixture is inducted during the intake stroke, during
which an early pilot spray (e.g., 50 DBTDC) of diesel is mnjected. As compression
progresses, the diesel fuel becomes spatially dispersed, creating few fuel-rich regions.
Near compression TDC, the dispersed diesel pilot auto-ignites, creating distributed
ignition centers.  Since ignition occurs throughout the cylinder, the air-fuel mixture can
burn more completely despite its lean state, providing better fuel conversion efficiencies.
Lean combustion prevents the formation of particulate emissions due to a lack of fuel-

rich regions and promotes low local temperatures, which in turn reduce NOx emissions.

LeanPropane-  Spatially
Air mixture dispersed

diesel spray
; Prop:no Dieselinjection
njected Into ot early (50 deg.
air during BTDC)
early intake compression

Lean combusti
_  Distributed and better mixing
promoted by
; ignition centers high swirl
! Low local
| Fastburn rates temperatures due
to lean
combustion
Better fuel
conversion
efficiencies Low NOx and PM

Figure 7.7 A schematic of the diesel-ignited propane dual fuel LTC concept
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A full range of injection timings was investigated, extending from 50 DBTDC
(earliest achievable with the MX10 engine) to 10 degrees DBTDC. In addition, a range
of fueling strategies, ie. varying the PES of propane, was mvestigated at 50 DBTDC.
Finally, EGR rate and intake boost pressure were manipulated to increase the PES of

propane at the mjection timing of 50 DBTDC.

7.3.2.1 Dual Fuel LTC - Effects of Injection Timing

Based on the results from conventional dual fueling, a low load (BMEP = 5 bar),
high PES (84%) condition was chosen to mvestigate dual fuel LTC. An mjection timing
sweep was performed, with the commanded start of mjection (SOI) ranging from 50
DBTDC' to 10 DBTDC. Intake boost pressure (Pin = 1.88 bar), EGR rate (10.6%), and
intake mixture temperature (Tin = 20.1°C) were kept constant. As shown in Figure 7.8,
fuel mjection pressure ranges from 100 to 400 bar at an SOI of 50 DBTDC. As SOI is
retarded, the injection pressure range increases to approximately 100 to 900 bar at 30
DBTDC and 100 to 1100 bar at 10 DBTDC, requiring the injection duration to be
decreased at SOIs of 30 and 50 in order to maintain the same flow of pilot fuel, engine
load, and PES of propane. Also shown in Figure 7.8, the heat release rate profiles reveal
the difference between the conventional and low temperature dual fuel combustion
regimes. At a commanded SOI of 10 DBTDC, a short ignition delay is followed by an
mitial heat release associated with pilot ignition and then a very high rate of heat release

as the remaining propane-air mixture is burned. At 30 DBTDC, the heat release profile

I The MXI10 engine is equipped with electronic unit pumps (EUPs), which supply the injection fuel
pressure. The EUPs are cam driven, and therefore sensitive to engine position. As injection timing is
changed, the available fuel pressure also changes. Therefore, the earliest injection timing that was able to
sustain pilot injection on the MX10 engine was found to be approximately 50 DBTDC.
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resembles that of conventional dual fuel combustion, with two distinct heat release
stages. The first stage is associated with the ignition of premixed pilot fuel folowed by
the propane-arr mixture in and around the pilot flame, and the second stage is associated
with flame propagation in the propane-air mixture. At an SOI of 50 DBTDC, the heat
release rate is nearly sinusoidal, indicating a well-mixed pilot, distributed ignition

centers, and uniform combustion.
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Figure 7.8 Dual fuel heat release rate, fuel pressure, and commanded mjection profiles
at commanded SOIs of 50, 30, and 10 DBTDC for 84 PES of propane

black: SOI =50 DBTDC, blue: SOI =30 DBTDC, red: SOI =10 DBTDC; BMEP =5
bar, N = 1500 RPM, EGR = 10.6%, Pin = 1.88bar, Tin = 20.1°C

The apparent ignition delay (IDa) is shown along with COV of IMEP, MPRR,
and combustion noise in Figure 7.9. As commanded SOI was advanced, IDa increased,

corresponding to a decrease in NOx emissions with SOIs more advanced than 25
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DBTDC. As the IDa period neared 40 CAD, in-cylinder mixing of the diesel pilot was
sufficient to prevent any high local temperatures and significant NOx formation. At
advanced SOIs, CA50 was delayed due to slower burn rates which resulted in increased
COV of IMEP. The increase in COV of IMEP can be counteracted by increasing in-
cylinder temperatures, thereby increasing burn rates. In this case, intake boost pressures
were high enough, increasing m-cylinder pressures (and temperatures) to facilitate
relatively low COV of IMEP even at an SOI of 50 DBTDC. As the SOI was advanced,
the MPRR decreased considerably. Injection near TDC resulted in short ignition delays,
low mixing, high local equivalence ratios, and high local temperatures; as a result, the
very reactive propane-air mixture in and around the pilot burned very quickly, yielding
very high peak heat release rates, high MPRR, and considerable combustion noise.
However, as ijection was advanced, ignition centers were increasingly distributed,
having lower equivalence ratios and local temperatures. The smooth, nearly sinusoidal
heat release peak indicates that the mixture is ignited almost volumetrically. As a result,

pressure rise rates were relatively low, yielding little combustion noise.
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Figure 7.9  Apparent ignition delay, COV of IMEP, combustion noise, and MPRR vs.
commanded SOI

BMEP =5 bar, N = 1500 RPM, EGR = 10.6%, Pin = 1.88 bar, Tin =20.1°C

To wunderstand whether this combustion process is conventional dual fuel
combustion or dual fuel LTC, the NOx and smoke emissions were examined. All
mjection timings tested yielded lower NOx and smoke emissions than the diesel baseline
tests, shown in Table 7.4, however the mjection timing did have a significant impact on
NOx emissions, as shown m Figure 7.10. At SOIs near TDC (SOI = 10 DBTDC), short
ignition delay periods indicate the presence of a conventional diesel pilot spray. Albeit
small, the pilot spray facilitated NOx formation due to the existence of the diffusion
flame, where temperatures are highest in conventional diesel combustion. As the SOI
was advanced to 35 DBTDC, CA50 was advanced and CA10-90 increased; as CAS0
neared TDC temperatures became higher, and longer residence times at higher

temperature yielded increased NOx emissions. However, as the commanded SOI was
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advanced beyond 25 DBTDC, NOx emissions decrease. Advancing the SOI increased the
ignition delay period, which facilitates mixing. A sufficiently advanced pilot spray will
lack the high local temperature regions necessary to facilitate NOx formation. At 45 and
50 DBTDC, NOx emissions drop to near-zero levels, even below the threshold required
by the EPA 2010 NOx restrictions. Despite little change n smoke emissions (as
characterized by FSN) throughout the timing sweep, the particle size distribution changes
considerably with mjection timing, as shown in Figure 7.12. The normalized particle
number concentration (dN/dlogDp) is plotted versus particle size.> The most noticeable
difference i size distribution is between the diesel baseline condition and the dual fuel
conditions; the diesel baseline condition produces more particles in both the nucleation
and accumulation mode regimes®, also related by the higher FSN. As injection timing is
advanced, the peak particle number concentration decreases. Longer ignition delays
provide for better mixing and fewer fuel-rich areas, preventing initial soot formation.
This change is likely not indicated by FSN trends because larger particles have a more
significant effect on FSN, having a greater chance to be trapped in the filter paper, and
the number of larger particles at each injection timing (greater than 100 nm) varies far
less than the number of smaller particles. Particles n the nucleation mode remain

relatively unchanged in the dual fuel combustion mode, regardless of injection timing but

2 Because the number of particle sizing bins in a given instrument is finite, the dN/dlogD,p metric is used to
normalize the particle concentration in a given bin by the bin size, allowing comparison between different
instruments utilizing different numbers of bins [TSI 2012]. For example, if a 64 channel scanning mobility
particle sizer (SMPS) was used which spanned the same overall particle size range of the EEPS, a regular
distribution would peak at a lower value than the 16 channel EEPS because approximately one quarter of
the number of particles would exist in each given bin of the SMPS.

3 Conventional diesel combustion has been shown to produce soot with a log-normal distribution of 20-300
nm diameter particles in a mixture containing solid and semivolatile fractions [Harris and Maricq 2001],
which are referred to as accumulation mode particles. In addition, cooling of the exhaust can cause
semivolatile materials to nucleate, producing smaller diameter “nucleation mode” particles.
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are significantly fewer in number than the nucleation mode particles resulting from

baseline diesel combustion.
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Figure 7.10  Brake-specific NOx and smoke emissions vs. commanded SOI for 84 PES
of propane, diesel baseline 1, and diesel baseline 2

BMEP =5 bar, N =1500 RPM, EGR = 10.6%, Pin = 1.88 bar, Tin» = 20.1°C
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Table 7.4  Diesel-only baseline conditions 5 bar BMEP

BMEP Intake Boost EGR Rate BSNO« Smoke

(bar) Pressure (bar) (%) (g/lkW-hr) (FSN)
Baseline 1 5 1.89 10.9 8.84 0.26
Baseline 2 5 1.66 35.5 1.48 2.04

Note: Unlike baseline 1, baseline 2 does not match the intake boost pressure and EGR
conditions used for all other points in the injection timing sweep; it is included for
completeness in terms of potential baseline diesel operation

Brake-specific hydrocarbon emissions and fuel conversion efficiency both varied
considerably with mjection timing. Plots of BSNOx-BSHC and BSNOx-FCE tradeofts
are shown in Figure 7.13. The reference baseline diesel condition is also shown in each
plot. The BSNOx-BSHC tradeoff shows that hydrocarbons were minimized at an SOI of
approximately 35 DBTDC; however, BSHC emissions remained fairly constant from an
SOI of 30 DBTDC to 50 DBTDC. The BSNOx-FCE tradeoff shows a similar, though
opposite trend with FCE; FCE was maximized at an SOI of approximately 40 DBTDC,
but remained fairly constant from an SOI of 30 DBTDC to 50 DBTDC. A similar
BSNO«-FCE tradeoff plot is observed by Krishnan et al. [2004] for ALPING combustion.
These tradeoff trends are likely related; decreasing combustion efficiency at early
mjection timings yields high THC emissions, leaving potential fuel chemical energy to be
expelled in the exhaust, transferring less energy to the piston, and decreasing fuel
conversion efficiency. This trend is reinforced by the combustion efficiency, propane,
and formaldehyde emissions shown for the range of injection timings in Figure 7.14. As
mjection timing was advanced, combustion efficiency mitially increased, then decreased;
similarly, propane (a combustion product) and formaldehyde (an intermediate species

known for its toxicity) mitially decreased and then increased. Based on these trends, it is
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clear that NOx emissions can be greatly reduced with an advanced pilot injection with

little or no compromise in FCE or THC emissions.
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Figure 7.13  Brake-specific NOx vs. brake-specific HC and fuel conversion efficiency
for 84 PES of propane, diesel baseline 1, and diesel baseline 2
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7.3.2.2  Dual Fuel LTC - Effects of PES, Intake Boost Pressure, and EGR Rate

A low load (BMEP = 5 bar), early mjection timing (SOI = 50 DBTDC) operating
condition was chosen to investigate the effects of primary fuel concentration, intake boost
pressure, and EGR rate on dual fuel LTC. Three sets of heat release rates and cylinder
pressure histories are shown in Figure 7.15. The first (top) set relates a progression in
PES of propane from 65 to 84 percent at a constant intake boost pressure (Pin = 1.57 bar)
and EGR rate (35%). The lowest PES of propane, 65 percent, exhibited signs of incipient
knock, related by the high-frequency oscillations in pressure. This is due to the large
pilot quantity required for 65 PES conditions, increasing the auto-ignition properties of
the well-mixed fuel-air charge, facilitating advanced combustion phasing, even before
TDC. The rapid pressure rise results in an apparent acoustic resonance leading to light
knock. As PES is increased, the resistance of the air-fuel mixture to auto-ignition is
increased, the CAS50 is retarded, the MPRR decreases, and knock is diminished. In fact,
the MPRR varies almost nversely to CA50, as shown in Figure 7.16. For the first data,
the COV of IMEP increased as PES increased to 11.1 percent at 84 PES. The increase in
COV of IMEP is a result of combustion phasing retarding with increasing PES of
propane. To suppress increasing combustion variability, the intake boost pressure was
increased and the EGR was decreased, as shown in the second (middle) set of Figure 7.15
for a PES range of 84 to 89 percent. Because neither boost pressure nor EGR are
simulated, the two variables are not mndependent, limiting analysis of each variable
independently. As the EGR valve is closed, more exhaust energy is available to the
turbine, increasing boost pressure and vice versa. Changing the VNT position to

counteract changes in intake boost pressure alters exhaust manifold pressure, which also
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affects the EGR rate. The overall effect of changing intake boost pressure and EGR rate
simultaneously is a compounded effect on oxygen availability, so small changes can be
significant to the combustion process. As boost is increased and the EGR is decreased,
increased bulk temperatures advance combustion phasing, facilitating consistent burn
rates and decreasing COV of IMEP. In addition, the COV of IMEP and combustion
duration appear to vary somewhat proportionally, indicating that faster burn rates
facilitate stability. With the COV of IMEP sufficiently decreased, the PES of propane can
be increased but deteriorating FCEs deter PES higher than 93 percent. Heat release rate
profiles at the high boost condition are shown in Figure 7.15 (bottom). Fuel conversion
efficiencies are low at very high PES due to very lean conditions; as the pilot quantity
decreases, flame propagation must take a larger role in order to sustain combustion
efficiency. Despite the high bulk temperatures, bulk quenching results from very lean
equivalence ratios (¢ = 0.3), resulting in poor combustion efficiency and poor fuel
conversion efficiency. Fuel conversion efficiency is highest at 77 PES when CAS0 is
phased nearest to TDC and equivalence ratio is sufficiently high to mamtain reasonably

high combustion efficiencies (96 percent).
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Figure 7.15 Heat release rate and cylinder pressure vs. engine position for a range of
PES of propane at a commanded SOI of 50 DBTDC

BMEP = 5 bar, N = 1500 RPM
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As the PES of propane is increased, the pilot quantity decreases resulting in a
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trapped i the fiter paper, having little effect on FSN.

corresponding decrease in NOx emissions, reaching near-zero values at 84 PES of
Trends for smoke and particulate mass concentration vary similarly; because
particles in the nucleation mode are mostly volatie [Kittelson 1998], they do not get

Instead, particles in the
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accumulation mode, which are larger and predominantly dictate particle mass, are
trapped and increase FSN. Therefore, FSN decreased at very high PES.

Carbon monoxide emissions increase moderately at first, but increase significantly
as the intake boost pressure is increased. Unburned hydrocarbon emissions increase
steadily until intake boost pressure is increased, where a significant decrease in THC
emissions is observed. These trends are related due to an increase in bulk temperatures at
higher boost pressures. Increased temperatures facilitate the mitial breakdown of more of
the hydrocarbon fuel (propane), but bulk temperatures are not high enough to facilitate

complete CO oxidation.

7.4  Conclusions

Conventional and low temperature dual fuel combustion was characterized
experimentally with two sets of experiments for diesel-ignited propane combustion in a
12.9-liter MX10 heavy duty diesel engine (with open architecture Drivven controller) at a
constant engine speed of 1500 rpm. The first set of experiments utilized stock control
parameters, varying PES of propane at the constant BMEP conditions of 5, 10, 15, and 20
bar. At 10 bar BMEP, fueling strategy and mjection timing were optimized to increase
the maximum achievable PES and to limit MPRR. The second set of experiments was
performed using early ijection LTC strategies. Injection timing and PES sweeps were

completed. Analysis of the results obtained led to the following mmportant conclusions:
1. A high PES (86%) of propane at low load, high EGR, low boost operation
(BMEP = 5 bar, EGR = 35%, Pin = 1.6 bar) yielded significant
mprovement in smoke emissions. Carbon monoxide and THC emissions

mcreased with PES at a higher rate at low load than high load; a
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competition for oxidation was observed between CO and THC emissions
at high PES, likely as a result of the low Oz concentrations due to high
EGR rates and low intake boost pressure.

. At sufficiently high load (BMEP = 15 and 20 bar), the combustion
duration (CA10-90) increased with increasing PES due to auto-ignition of
the propane-air mixture and sustained injection duration (due to low PES).
In addition, CAS50 was advanced, yielding very high MPRR which
prevented high load operation at PES values higher than 35% at 15 bar

BMEP and 25% at 20 bar BMEP.

. At a load of 10 bar BMEP, the maximum achievable PES of propane was

increased by optimizing the fueling strategy. By starting with a low, pre-
calculated pilot quantity and increasing the propane flow rate to reach the
desired load, high MPRRs were avoided during transient operation.
Despite optimizing the fueling strategy, high MPRR (>15 bar/CAD)
limted the maximum PES value to 80%. Retarding the injection timing
resulted n a minimum MPRR at an SOI of 6.6 DBTDC with minimal FCE
loss tradeoff. Further retardation of SOI resulted in increased MPRR and
decreased FCE.

. Diesel-ignited propane dual fuel LTC was achieved at BMEP = 5 bar
using an SOI greater than 45 DBTDC and a PES of propane of about 84
percent. At these conditions, NOx emissions (BSNOx = 0.019 g’kW-hr)
were below EPA 2010 restrictions, and smoke emissions were very low
(FSN = 0.09). At a constant PES of 84 percent, fuel conversion efficiency
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and THC trends were shown to be fairly insensitive at SOIs greater than
30 DBTDC, but more retarded SOIs yieldled poor FCEs and THC
emissions. High PES operation was limited by an increasing COV of
IMEP due to low bulk temperatures as a result of retarded CASO0.

. Dual fuel LTC was optimized for high PES of propane operation (up to 93
percent) at an SOI of 50 DBTDC and 5 bar BMEP using increased boost
and decreased EGR rate to increase bulk temperatures, advance CA50, and
decrease the COV of IMEP. Knock was observed at 65 PES due to
apparent acoustic resonance caused by excessive pressure rise rate.
However, FCE suffers due to poor combustion efficiency at increasing
PES of propane; despite high bulk temperatures at increased boost, lean
conditions (¢ = 0.3) facilitate bulk quenching, resulting in very high CO

and THC emissions.
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CHAPTER VIII

SUMMARY AND RECOMMENDATIONS FOR FURTHER RESEARCH

8.1 Summary

This study has exammned conventional and low temperature dual fuel combustion
using either propane or methane as primary fuels and diesel as a pilot fuel for potential
improvement of engne-out emissions and increased utilization of alternative fuels.
Increased emissions regulations have driven the search for improved modes of
combustion and dual fuel combustion shows significant potential in this regard. The
conventional dual fuel combustion mode requires little engmne modification and can
simultaneously reduce NOx and smoke emissions. Increased CO and THC emissions are
a potential side effect, but can be treated using cheap oxidation catalysts, given adequate
exhaust temperature for light-offt ~While requiring more control than conventional dual
fuel combustion, dual fuel LTC offers improved NOx emissions and higher percent
energy substitution (PES) by primary fuel The primary goal of implementing,
optimizing, and assessing dual fuel LTC was achieved using diesel-ignited propane in the
MX10 heavy-duty diesel engne. The following experimental investigations and analyses
led to the completion of this goal.

In the first experimental investigation, a light-duty 1.9L Volkswagen TDI engine
was used to perform conventional dual fuel experiments using diesel-ignited methane and

diesel-ignited propane. The engine had a wastegated turbocharger for mtake boost
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pressure control and no EGR. Engine-position resolved pressure measurements were
obtained and heat release rate analyses were performed. Two sets of experiments were
performed; the first experiment utilized constant pilot quantities and varying overall
equivalence ratio and the second experiment examined various PES of primary fuel at
four different constant-BMEP conditions. In both cases, the PES of primary fuel was
limited by engne instability due to cyclic variability in IMEP at low loads and excessive
pressure rise rates and the incidence of knock at high loads.

The first analysis concentrated on dual fuel ignition delay behavior for various
concentrations of primary fuel The length of the ignition delay period is important as it
determines the amount of fuel-ar mixing before ignition occurs which can have a
significant effect on the ensuing combustion process, especially in LTC applications.
Results indicated that with a constant but large pilot quantity, increasing propane
concentration will decrease ignition delay. A sufficiently high overall equivalence ratio
may facilitate spontancous auto-ignition of propane even before diesel mjection. A
cycle-by-cycle analysis shows that for a constant pilot quantity, cyclic variations in the
start of combustion increased as propane concentration increased. A similar analysis of
diesel-ignited methane combustion revealed very few cyclic variations of the SOC as
methane concentration increased. Different ignition delay trends were observed at low
and high constant BMEP conditions with increasing PES of propane; at low BMEPs, the
ignition delay increased to a maximum and then decreased as engne mnstability increased.
At high BMEPs, increasing PES of propane shortened the ignition delay period. At low
BMEPs, cyclic variabilty of both diesel-ignited methane and diesel-ignited propane
increased with increasing PES.
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In the next analysis, diesel-ignited propane and diesel-ignited methane dual fuel
combustion in the light-duty Volkswagen engine were characterized based on heat
release rate profiles and metrics such as combustion phasing (CA50) and combustion
duration (CA10-90), as related to performance and emissions results. At low pilot
quantities, it was shown that diesel-ignited propane and diesel-ignited methane
combustion behave similarly, although propane exhibits slightly faster combustion, likely
due to its higher lammar burning velocity. With a larger fixed pilot quantity, propane
addition advanced the combustion phasing and the peak AHRR increased while increased
methane concentration resulted in a retarded or constant combustion phasing. It was
shown for all fixed-pilot conditions that, as gaseous fuel concentration was increased,
NOx emissions decreased or remained constant while smoke emissions increased. The
CO and THC emissions increased with increasing primary fuel concentration at low loads
and decreased as pilot quantity was increased. Overall, diesel-ignited propane
combustion yielded higher CO, lower THC, and slightly higher FCE than diesel-ignited
methane combustion, which is attributed the fuel properties of propane. At high constant
BMEP conditions, the same differences were observed in diesel-ignited propane and
diesel-ignited methane combustion. As methane concentration was increased, ignition
delay increased which is attributed to oxygen displacement and chemical effects present
with the high methane fueling rates needed to achieve high PES operation. Increasing
concentration of propane decreased ignition delay, transforming the conventional two-
peak heat release profile mto a single, early AHRR peak of substantially higher

magnitude.  This behavior of diesel-ignited propane combustion indicates a departure
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from the classical interpretation of dual fuel combustion, instead resembling a “diesel-
regulated HCCI-like” process.

In the second experimental nvestigation, a heavy-duty 12.9L MX10 diesel engine
was used to perform conventional and low temperature dual fuel experiments using
diesel-ignited propane. The engne had a VNT turbocharger for intake boost pressure
control and a cooled EGR loop. The MX10 engne was controlled using a Drivven open-
architecture controller, which provided much better control of all engne parameters
compared to the OE ECM of the VW engne. Engine-position resolved pressure
measurements were obtained and heat release rate analyses were performed. Two sets of
experiments were performed; the first experiment utilized stock control parameters to
examine various PES of propane at four different constant-BMEP conditions and the
second experiment utilized very early injection timings and high PES of propane to
mplement and optimize dual fuel LTC at 5 bar BMEP.

The first analysis examined conventional dual fuel combustion using diesel-
ignited propane on the MXI10 engne. Results revealed that higher PES of propane
operation was possible before knocking conditions were encountered on the MX10 than
the VW TDI while at equivalent loading conditions (BMEPs). This is likely a result of a
lower geometric compression ratio for the MX10 engne and the presence of a cooled
EGR loop. A high PES of propane operation at low load yielded significant
mprovement in smoke emissions over the stock operation. As with the VW engine, the
CO and THC emissions increased with PES, more so at lower loads than at higher loads.
A competition for oxidation was observed between CO and THC emissions, likely as a
result of low O: concentration at 5 bar BMEP. At a sufficiently high load, the

154

www.manaraa.com



combustion duration increased with increasing PES due to auto-ignition of the propane-
air mixture prior to diesel ijection. Subsequently, CA50 was advanced yielding very
high MPRR and combustion noise, thereby preventing operation at higher PES. Since a
high MPRR was the primary lLmitation of high PES operation, the fueling strategy and
mjection timings were optimized at 10 bar BMEP which led to an increase from 60 to 80
PES of propane and a decrease in MPRR.

Finally, dual fuel LTC was implemented and exammed using very early mjection
strategies similar to ALPING combustion [Srinivasan 2003] at 5 bar BMEP. At an SOI
of 50 DBTDC and PES of 84 percent propane, engine-out NOx emissions (BSNOx =
0.019 g/kW-hr) were decreased below the EPA 2010 emissions regulatory lLmit (0.268
g/kW-hr) without a sacrifice in smoke emissions (smoke = 0.09 FSN). Fuel conversion
efficiency was slightly greater than 32 percent at this conditon and proved to be
relatively nsensitive to injection timings untl 30 DBTDC. Increasing the PES of
propane above 84 percent was limited by an increasing COV of IMEP, which was 11
percent at this condition. Finally, dual fuel LTC was optimized for high PES operation
(up to 93 percent) at an SOI of 50 DBTDC and 5 bar BMEP. Increased boost and
decreased EGR was used to increase bulk temperatures, advanced CAS50, and decrease
the COV of IMEP. However, FCE suffered due to poor combustion efficiencies, likely
resulting from very lean conditions (¢ = 0.3). Higher intake mixture temperatures along
with higher equivalence ratios may mmprove the FCE at high PES operation, but high

MPRR and knock may be a concern.

155

www.manaraa.com



8.2 General Recommendations

Based on the present study, it is clear that the dual fuel LTC concept has the
potential to drastically reduce engine-out emissions and utilize alternative fuels. In fact, a
very wide range of alternative and renewable fuels could be utillized with this concept
provided one fuel is a high cetane fuel directly njected into the cylinder and the other is a
low cetane fuel.  Fueling systems could be adapted to the type(s) of fuel available
domestically for a given region, or the needs of a particular application, ie. automotive
vs. stationary engine. Fuel storage is a concern with mobile applications, and
volumetrically energy dense fuels such as gasoline and diesel are preferred. As fossil
fuel resource concerns become increasingly prominent, renewable alternatives such as
ethanol (low cetane) and biodiesel (high cetane) are suitable alternatives. In addition, the
fuel properties of these two fuels will likely lend to improved operation of the dual fuel
LTC concept. FEthanol has a higher resistance to knock than propane, potentially
allowing higher PES operation, biodiesel typically has a higher cetane number than
normal diesel, which may immprove HC and CO emissions with faster burn rates. It is
unlkely that any one (or two) fuels will ever satisfy all power-generation needs;
therefore, continued research nto many alternative and renewable fuels that meet the
criteria  necessary for conventional and low temperature dual fuel combustion is

recommended.

8.3  Project-Specific Recommendations
8.3.1 Hardware Modifications on the M X10 Engine
There are several hardware modifications that have the potential to improve

conventional dual fuel operation using diesel-ignited propane at high PES. Slightly lower
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compression ratios (CR = 15) would decrease peak pressures, reducing the potential for
knock at high loads while maintaining high efficiency operation. Similarly, a modified
valve tran utiizmg a late intake valve closmg time could reduce the -effective
compression ratio while maintaining good volumetric expansion ratios, characteristic of a
high geometric compression ratio. However, both of these recommendations would
require extensive engine modification.

The method of propane introduction has room for mprovement. As propane was
ntroduced upstream of the turbocharger, the compressor had to do extra work re-
compressing propane, reducing turbocharger efficiency. By the same effect, oxygen
displacement occurred as the flow rate of propane was increased. Introducing propane
after the compressor may be advantageous in this regard. In addition, the potential
negative side effects of fumigation during transient operation should be investigated.
Since fumigation took place far upstream of the cylinders, a considerable lag may be
noticed during transient operation.  Port fuel injection (PFI) near the intake valves has
the potential to solve both of these issues, but may require some engine modification.
Liquid propane PFI or direct mjection (DI) are more ambitious injection strategies, but
would yield similar mmprovements as well as potential advantages of their own. Injecting
liquid propane in the intake manifold or directty nto the cylinder would have a
significant charge cooling effect due to evaporation of the propane. Cooler charge
temperatures would prevent the onset of knock, allowing higher compression ratio
operation. Similar to gasoline direct injection strategies, a propane DI system would also
allow for in-cylinder fuel stratification, further preventing the onset of knock and

allowing even higher compression ratio operation.
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A major limiting factor during dual fuel LTC operation was the diesel injection
system. While the EUP system provides many advantages in terms of reliability and
rapidly adjustable fuel pressures, it also causes many challenges in terms of early
mjection timing and separating the mjection timing and njection pressure variables. A
modern common-rail direct ijection fuel system would enable the investigation of

mjection timing earlier than 50 DBTDC and provide steady fuel injection pressures.

8.3.2  Dual Fuel LTC - Investigate Intake Mixture Temperature Effects

An experimental investigation of the effects of intake mixture temperature could
be very beneficial to the improvement of FCEs during high PES dual fuel LTC operation
at low loads. If high buk temperatures can be achieved with sufficiently high
equivalence ratios, combustion efficiency might be significantly improved, decreasing
CO and THC emission and increasing FCE. Potential negative side effects are high
MPRR and knock and potentially higher NOx emissions; however, these may be avoided
through the use of diluents such as EGR. In fact, one mechanism for increasing the
mtake mixture temperature is uncooled (hot) EGR, however some modification would be

required to implement this on the MX10 engine.

8.3.3  Dual Fuel LTC - Utilize Multiple Injections to Control Combustion Phasing

Because the mjection and ignition events in dual fuel LTC are separated, there is
some control over the combustion event due to the fuel ijection itself and the fuel
mixture auto-ignition properties. A potential advantage of the EUP fuel system is the
ability to have multiple mjections during the same combustion cycle at drastically

different ijection pressures. An early mjection could utilize a low injection pressure,
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minimizing wall impingement, while a high pressure, late injection event takes place near
TDC. Therefore, a strategy utilizing both early and late LTC injection strategies has the
potential to significantly reduce emissions while adequately controlling combustion
phasing, allowing higher load conditions. A potential challenge with this strategy will be
facilitating the necessary mixing after the late injection event to prevent NOx and soot
formation.  Typically engines that employ late ijection strategies utilize a significant
amount of swirl to promote mixing during the ignition delay period, however the MX10

combustion chamber is thought to be relatively quiescent.

8.3.4  Specific Heat Ratio Experiments

When performing the heat release rate analyses for dual fuel combustion, a
specific heat ratio, or polytropic coefficient is required. The correlation for the polytropic
coeflicient of the intake charge used in this work is based on temperature [Brunt 1998],
but does not take equivalence ratio mnto account. Other correlations for lean burn single
fuel mixtures also exist [Ceviz and Kaymaz 2005], and should be investigated and
implemented in conjunction with the DCAT code for use in future heat release analyses.
Similarly, experiments could be performed i order to model a correlation for a specific
fuel, such as propane. Pressure data would be taken while motoring the single cylinder
research engine in the MSU ACE laboratory with an AC dynamometer fumigated with
various propane concentrations but not ignited with diesel. The pressure data would then
be analyzed on a logP vs logV plot and the polytropic coefficient (slope of the

compression and expansion lines) specific to each condition could be extracted.
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APPENDIX A

LABVIEW DATA ACQUISITION VI - VOLKSWAGEN TDI ENGINE
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Figure A2 DAQ VI Block Diagram — Overview
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APPENDIX B

ADDITIONAL DRAWINGS AND SCHEMATICS: MX10 TEST CELL
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APPENDIX C

CAN VI BLOCK DIAGRAMS BASED ON SAE J1939 FOR USE ON MX10 TEST

CELL WITH OE ECM
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Figure C.2 CAN VI — Block Diagram Overview
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APPENDIX D

CONTROL AND DAQ VI BLOCK DIAGRAMS BASED ON DRIVVEN

HARDWARE AND DCAT FOR USE ON MX10 TEST CELL
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Figure D.7  Drivven Realtime Control — Overview
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APPENDIX E

DCAT CONFIGURATION FOR THE PACCAR MX10 DUAL FUEL LTC

EXPERIMENTS
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The following paragraphs outline the specific options and settings configured for
recording data using DCAT on the PACCAR MXI10 engine. Values shown in figures
indicate the values used while taking data for the PACCAR MXI10 dual fuel LTC

experiments. Any settings not explicitly mentioned here utilized the default parameters.

E.1 Setup Tab

The following settings must be configured before DCAT can be nitialized.

E.1.1 Engine Setup

Engine geometry parameters, valve timing, polytropic exponent source, encoder
resolution, extrapolation level, cycle phasing method, and DAQ rates are outlned in the
engine setup tab. The cycle phasing method refers to the way in which DCAT
determines which rotation is associated with compression in a four stroke cycle. “Gate
Z,” the cycle phasing method used, requires a once-per-cycle Boolean mnput at the FPGA
level to occur at the same time as the encoder index. In this case, an angle-angle-pulse
subVI is used to create the necessary pulse. Other phasing method options are available,
such as the ‘random Z’ method, which does not require a cam signal. The engmne setup

tab as configured for the MX10 engine is shown in Figure D.1.
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"B Engine Senup

e .
o @ 3

Intake Valve Open -350  [CAD]
Intake Valve Close |-180  [CAD]
Exheust Valve Open 160 [CAD]
ExhaustValve Clasa 360 [CAD]

Bore §013 [m}

Sucke 0162 [m

PinOffset 0 [m)
Clearance Volume |0.13439] [Rter]
MaxSpeed 2500 [RPM]

Head Area (100 |%]

CrownAres 100 [3]

Cynder Count 1
Polytropic Exponent |1.34

B Volume File Enabie

Figure E.1

E.1.2

Cylinder

pressure signals are configured on the synchronous setup tab.

pressure,

Engme epm—

| PACCAR MX10 Encoder R 13600 {ppr]

Project Random Z 1

|PERC Digital Filter |1 Tus]

f::d""'p 3 Encotes Extrap Leved |2

Dby S Encoder Divide |4
Rotations Per Cycle 2

TOC Offset 1360 [CAD)

Phase ’Gme z

Displacement Volume (215026 [liter]
Compression Ratio | 170001
Actusl TDC Offset 1360 [CAD)
Semple Resolation 13600 [ppe]
Cycle Resolution 7200 [ppc]
Reduced Rezolution 70 [par]

Reduced Cycle Resolution 1440 [ppc]

Encoder Setup KRising Edge

May Symc Rate | 500 =0
Async Rate 100 (k5]
Medium Spead Rate [1000  {S/5]

SO

Pelytropic Emo__nc"_u Source

~Constant Value

Synchronous Setup

fuel pressure,

mjector command voltage,

Reduced Divide fﬂ

Max CAT }m

Encoder Error @

Next-Cycle Enable @

£FT Sim Enable g

Engine setup tab in DCAT configured for MX10 test cell

and manifold

The name, physical
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E.1.3 Medium Speed Setup

All steady state analog mput signals are configured on the medium speed setup
tab. This includes emissions, dyno speed and load, pressures, flow rates, and
temperatures. As with the synchronous setup, the name, physical channel, units, and

scaling, among others, are configured here.
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E.2 Settings Tab

The following settings may be configured either before or after DCAT is

mitialized.

E.2.1 TDC Offset Settings

While monitoring the cylinder pressure plot during engine motoring (achieved by
turning off the injection event only in the cylinder with the pressure sensor), the fine
adjust was set to a value which provided a peak pressure location of about 0.5 DBTDC.
This setting is verified in the log P vs log V plot by very straight compression and

expansion lines with no crossover.

E.2.2 Pegging Settings
Manifold air pressure (MAP) was used to scale, or peg the cylinder pressure
signal. Therefore, the “synchronous MAP” setting was used. Manifold air pressure was

sampled at a location of 300 DBTDC for a 5 CAD window.

E.2.3 Filter Settings
A boxcar type filter was used on the cylinder pressure signal. A value of 6 was

used for “N”. This filter is also known as a “moving average.”

E.2.4 Heat Release Settings
A “single zone + heat transfer” model was chosen. The heat release curve was
smoothed by one percent. The heat transfer calculation employed a Hohenberg

correlation [Hohenberg 1979], with the wall temperature profile approximated as a
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constant 480 degrees K. For the purpose of calculating the mass fraction burned, the start

and end of combustion were set at a constant 60 DBTDC and 60 DATDC, respectively.

E.3 Controls Tab
E.3.1 Calculations

The parameters chosen for calculations include the following: Basic, MEP,
Motoring, Gas Temp, Injector, Heat Release, Noise, Misfire, Pump, Knock, and Medium

Speed. These options must be selected before DCAT is mitialized.

E.3.2 Raw File Save

In most cases, raw files were recorded and later post-processed. Data are mnitialty
recorded to the PXI hard disk and must be transferred via FTP to the host computer to be
processed. One thousand consecutive cycles were taken unless operating conditions

required a shorter duration (e.g high pressure rise rates or knock).
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